129 research outputs found

    Analysis Of The Cyclability Of Lithium-polymer Batteries

    Get PDF
    Comunicación y póster en congresoLithium ion batteries and similar energy storage devices have an increasing importance for the modern society as they are present in many portable electronic devices and have perspectives in the fields of electric vehicles and renewable energy accumulation. Herein, we present results from charge and discharge cycles on batteries under controlled conditions. The cyclability of commercial lithium-polymer pouch batteries under different charge/discharge rates and temperatures was studied. Based on the results, the relationship between the state of charge and the cell voltage was obtained, as well as degradation of the cells, i.e., the decrease of the energy capacity after a number of cycles. The experimental results were compared with simulations based on Newman's model for Lithium Ion Batteries, carried out using the COMSOL Multiphysics® software. The batteries and fuel cell and the heat transfer modules were use to couple between the temperature and the electrochemical interactions. The results show the correlation between temperature, C-rate and degradation in lithium ion batteries. It is specially remarkable the decrease of the apparent capacity of batteries at low temperatures, and the increase of the degradation at higher temperatures. These results are essential for the design of mechanisms that could prevent battery failure.The authors acknowledge the financial support from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 778045, and the "Plan Propio de Investigación y Transferencia de la Universidad de Málaga", code: PPIT.UMA.B5.2018/17

    Modeling of Electrokinetic Remediation Combining Local Chemical Equilibrium and Chemical Reaction Kinetics

    Get PDF
    A mathematical model for reactive-transport processes in porous media is presented. The modeled system includes diffusion, electromigration and electroosmosis as the most relevant transport mechanism and water electrolysis at the electrodes, aqueous species complexation, precipitation and dissolution as the chemical reactions taken place during the treatment time. The model is based on the local chemical equilibrium for most of the reversible chemical reactions occurring in the process. As a novel enhancement of previous models, the local chemical equilibrium reactive-transport model is combined with the solution of the transient equations for the kinetics of those chemical reactions that have representative rates in the same order than the transport mechanisms. The model is validated by comparison of simulation and experimental results for an acid- enhanced electrokinetic treatment of a real Pb-contaminated calcareous soil. The kinetics of the main pH buffering process, the calcite dissolution, was defined by a simplified empirical kinetic law. Results show that the evaluation of kinetic rate entails a significant improvement of the model prediction capability.This work has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 778045. Part of this work was supported financially by the European Commission within the project LIFE12 ENV/IT/442 SEKRET “Sediment electrokinetic remediation technology for heavy metal pollution removal”. Paz-Garcia acknowledges the financial support from the “Proyecto Puente - Plan Propio de Investigación y Transferencia de la Universidad de Málaga”, code: PPIT.UMA.B5.2018/17. Villen-Guzman acknowledges the financial support from the University of Malaga through a postdoctoral contract

    Anaerobic co-digestion of municipal sewage sludge and fruit/vegetable waste: effect of different mixtures on digester stability and methane yield

    Get PDF
    There are different options for the management of fruit and vegetable wastes (FVWs), but the most environmental-friendly is the anaerobic digestion, because it allows an optimum recovery of materials and energy from the two by-products: biogas and digestate. Nevertheless, in many cases there are economic and technical problems that cause the selection of other alternatives. Frequently these wastes are produced in large quantities but only during few weeks of the year. In these cases, this is the most important economic problem, because large digesters that would be used only for short time periods every year would be required. In addition, a close control of the pH of the digester is required for this kind of residues, for which the hydrolysis is usually faster than the methanogenesis, so large concentrations of fatty acids should be prevented to maintain the adequate pH value for anaerobic digestion that should be neutral or slightly alkaline. Both problems can be simultaneously overcome by the co-digestion with other residues that are produced throughout the year. Among the benefits of co-digestion, one of the most important is the improvement in the feedstock characteristics, since it may allow a more equilibrate composition resulting in a better performance of the digester in treatment capacity, and a better quality of biogas and digestate. The co-digestion with other substrates with a complementary composition that are produced throughout the year and that are already managed by anaerobic digestion is probably the optimum management option. For these cases, if the existing anaerobic digester is oversized and allows the introduction of additional volumes of wastes, the mean retention time of the digestate should be maintained. Therefore, the anaerobic co-digestion of fruit and vegetable waste (FVW) and municipal sewage sludge (MSS) under mesophilic condition and a constant hydraulic retention time (20 d) is studied. The effects on digester performance of the FVW:MSS ratio and the organic loading rate (OLR) were examined. The OLR is the mass of volatile solids fed per volume of digestate and day.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Influence of chemical reaction kinetics on electrokinetic remediation modelling results

    Get PDF
    A numerical model describing transport of multiple species and chemical reactions during electrokinetic treatment is presented. The transport mechanisms included in the model were electromigration and electroosmosis. The chemical reactions taken into account were water electrolysis at the electrodes, aqueous species complexation, precipitation, and dissolution. The model was applied to simulate experimental data from an acid-enhanced electrokinetic treatment of a Pb-contaminated calcareous soil. The kinetics of the main pH buffering process (i.e., calcite dissolution) was taken into account and its time-dependent behavior was described by a rate law. The influence of kinetics was evaluated by comparing the results from a set of simulations in which calcite dissolution was implemented considering thermodynamic equilibrium and another set in which the same reaction was described by the rate law. The results show that the prediction capability of the model significantly improves when the kinetic rate is taken into account.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Co-digestion of mixed sewage sludge and fruit and vegetables wastes effect of different mixtures on biogas yield

    Get PDF
    Disposal of fruit and vegetable wastes (FVWs) in landfill site cause serious environmental issues such as contamination of soil, air and ground water. These wastes contain large quantities of biodegradable organic fractions, with high moisture that facilitates their biological treatment. One of the best alternatives to landfill disposal of these wastes is the anaerobic digestion. Therefore, it is one of the most widespread stabilization processes of the sludge in municipal wastewater treatment plants (WWTP). Introduction of FVW in WWTP and co-digestion with mixed sludge (MS) could enhance biogas production and plant economic feasibility. A lab-scale experiment for the anaerobic co-digestion of FVW and municipal mixed sludge under mesophilic condition and 20 days hydraulic retention time is investigated. Initially the digester was fed with mixed sludge (MS) from wastewater treatment plants with an average organic loading rate (OLR) of 0.63 (g L–1 d–1). The co-digestion of mixed sludge and FVW was performed at various organic loading ratios (OLRs), between 0.63 and 5.5 (g L–1 d–1). The experimental specific biogas and methane productions are 0.656 L g–1 and 0.340 L g–1 respectively. Alkalinity and pH remains relatively constant regardless the introduction of different proportions of FVW in the mixture. Co-digestion, compared with the digestion of MS as single substrate, improves the biogas and methane production.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    New Perspectives for Electrodialytic Remediation

    Get PDF
    Electrodialytic remediation has been widely used for the recovery of different contaminants from numerous matrices, such as, for example, polluted soils, wastewater sludge, fly ash, mine tailing or harbour sediments. The electrodialytic remediation is an enhancement of the electrokinetic remediation technique, and it consists of the use of ion-exchange membranes for the control of the acid and the alkaline fronts generated in the electrochemical processes. While the standard electrodialytic cell is usually built with three-compartment configuration, it has been shown that for the remediation of matrices that require acid environment, a two-compartment cell has given satisfactory removal efficiencies with reduced energy costs. Recycling secondary batteries, with growing demand, has an increasing economic and environmental interest. This work focusses on the proposal of the electrodialytic remediation technique as a possible application for the recycling of lithium-ion cells and other secondary batteries. The recovery of valuable components, such as lithium, manganese, cobalt of phosphorous, based on current recycling processes and the characterization of solid waste is addressed.This work has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 778045. Paz-Garcia acknowledges the financial support from the University of Malaga, project: PPIT.UMA.B5.2018/17. Villen-Guzman acknowledges the funding from the University of Malaga for the postdoctoral fellowship PPIT.UMA.A.3.2.2018. Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tec

    Electrodialytic Recovery of Cobalt from Spent Lithium-Ion Batteries

    Get PDF
    Contribución en congreso científicoRecycling lithium-ion batteries has an increasing interest for economic and environmental reasons. Disposal of lithium-ion batteries imposes high risk to the environment due to the toxicity of some of their essential components. In addition to this, some of these components, such as cobalt, natural graphite and phosphorus, are included in the list of critical raw materials for the European Union due to their strategic importance in the manufacturing industry. Therefore, in the recent years, numerous research studies have been focused on the development of efficient processes for battery recycling and the selective recuperation of these key components. LiCoO2 is the most common material use in current lithium-ion batteries cathodes. In the current work, an electrodialytic method is proposed for the recovery of cobalt from this kind of electrode. In a standard electrodialytic cell, the treated matrix is separated from the anode and the cathode compartments by means of ion-exchange membranes. A cation-exchange membrane (CEM) allows the passage of cations and hinders the passage of anions, while the behaviour of anion-exchange membrane (AEM) does the opposite. A three-compartment electrodialytic cell has been designed and assembled, as depicted in the figure. In the central compartment, a suspension of LiCoO2 is added. Different extracting agents, such as EDTA, HCl and HNO3, are tested to enhanced the dissolution and the selective extraction of the target metal. Dissolved cobalt-containing complexes migrate towards the cathode or the anode compartments depending on the ionic charge of the complexes. While cobalt extraction via extracting agents is an expensive treatment, as it requires the constant addition of chemicals, an efficient electrodialytic cell could allow the recirculation of the extracting agents and the economical optimization of the process.This work has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 778045. Paz-Garcia acknowledges the financial support from the University of Malaga, project: PPIT.UMA.B5.2018/17. Villen-Guzman acknowledges the funding from the University of Malaga for the postdoctoral fellowship PPIT.UMA.A.3.2.2018. Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tec

    Anionic species transport through the soil (Electromigration versus Electroosmosis): The case of EDTA

    Get PDF
    The use of EDTA as a complexing agent to extract metals from soil is common. We have tested this possibility for the remediation feasibility studies of a soil contaminated with lead, collected in the mining district of Linares (Spain), a region where the mining activity has been going on for more than 20 centuries. In this work, we have found that close to 100% of Pb is removed from the contaminated soil when EDTA is used in batch reactor experiments. However, almost no Pb is removed when EDTA is used as an enhancing agent in electrokinetic soil remediation of the same soil. The percentage of Pb removed is 0-10% and the analysis of soil after electrokinetic treatment indicates that more than 90% of Pb remains in the soil. Instead, the use of other mobilization agents that gave also good removal yields for the batch reactor experiments gave also important removals by EKR [1]. Usually it is assumed that the removal of toxic metals during EKR take place by electromigration, which is about one order of magnitude more important than any other transport process, such as electroosmosis, diffusion, etc. [2]. Nevertheless, we found that in EKR experiments enhanced with EDTA, the electroosmotic flow is very important and severely impairs the extraction of lead. The negative charge of the complex is probably the main reason for the different behavior relative to the other mobilization agents. REFERENCES: [1] M. Villen-Guzman, J.M. Paz-Garcia, J.M. Rodriguez-Maroto, C. Gomez-Lahoz and F. Garcia-Herruzo. Acid Enhanced Electrokinetic Remediation of a Contaminated Soil Using Constant Current Density: Strong vs. Weak Acid. Separation Science and Technology (in press; DOI 10.1080/01496395.2014.898306). [2] Y.B. Acar, and A.N. Alshawabkeh. Principles of electrokinetic remediation Environ. Sci. Technol. 27(13), 2638-2647. (1993).Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech
    • …
    corecore