44 research outputs found

    Lysine pathway metabolites and the risk of type 2 diabetes and cardiovascular disease in the PREDIMED study: results from two case-cohort studies

    Get PDF
    Background: The pandemic of cardiovascular disease (CVD) and type 2 diabetes (T2D) requires the identifcation of new predictor biomarkers. Biomarkers potentially modifable with lifestyle changes deserve a special interest. Our aims were to analyze: (a) The associations of lysine, 2-aminoadipic acid (2-AAA) or pipecolic acid with the risk of T2D or CVD in the PREDIMED trial; (b) the efect of the dietary intervention on 1-year changes in these metabolites, and (c) whether the Mediterranean diet (MedDiet) interventions can modify the efects of these metabolites on CVD or T2D risk. Methods: Two unstratifed case-cohort studies nested within the PREDIMED trial were used. For CVD analyses, we selected 696 non-cases and 221 incident CVD cases; for T2D, we included 610 non-cases and 243 type 2 diabetes incident cases. Metabolites were quantifed using liquid chromatography–tandem mass spectrometry, at baseline and after 1-year of intervention. Results: In weighted Cox regression models, we found that baseline lysine (HR+1 SD increase=1.26; 95% CI 1.06–1.51) and 2-AAA (HR+1 SD increase=1.28; 95% CI 1.05–1.55) were both associated with a higher risk of T2D, but not with CVD. A signifcant interaction (p=0.032) between baseline lysine and T2D on the risk of CVD was observed: subjects with prevalent T2D and high levels of lysine exhibited the highest risk of CVD. The intervention with MedDiet did not have a signifcant efect on 1-year changes of the metabolites. Conclusions: Our results provide an independent prospective replication of the association of 2-AAA with future risk of T2D. We show an association of lysine with subsequent CVD risk, which is apparently diabetes-dependent. No evidence of efects of MedDiet intervention on lysine, 2-AAA or pipecolic acid changes was found

    Arginine catabolism metabolites and atrial fibrillation or heart failure risk: 2 case-control studies within the Prevención con Dieta Mediterránea (PREDIMED) trial

    Get PDF
    Background Arginine-derived metabolites are involved in oxidative and inflammatory processes related to endothelial functions and cardiovascular risks. Objectives We prospectively examined the associations of arginine catabolism metabolites with the risks of atrial fibrillation (AF) or heart failure (HF), and evaluated the potential modifications of these associations through Mediterranean diet (MedDiet) interventions in a large, primary-prevention trial. Methods Two nested, matched, case-control studies were designed within the Prevención con Dieta Mediterránea (PREDIMED) trial. We selected 509 incident cases and 547 matched controls for the AF case-control study and 326 cases and 402 matched controls for the HF case-control study using incidence density sampling. Fasting blood samples were collected at baseline and arginine catabolism metabolites were measured using LC-tandem MS. Multivariable conditional logistic regression models were applied to test the associations between the metabolites and incident AF or HF. Interactions between metabolites and intervention groups (MedDiet groups compared with control group) were analyzed with the likelihood ratio test. Results Inverse association with incident AF was observed for arginine (OR per 1 SD, 0.83; 95% CI: 0.73–0.94), whereas a positive association was found for N1-acetylspermidine (OR for Q4 compared with Q1 1.58; 95% CI: 1.13–2.25). For HF, inverse associations were found for arginine (OR per 1 SD, 0.82; 95% CI: 0.69–0.97) and homoarginine (OR per 1 SD, 0.81; 95% CI: 0.68–0.96), and positive associations were found for the asymmetric dimethylarginine (ADMA) and symmetric dimethlyarginine (SDMA) ratio (OR per 1 SD, 1.19; 95% CI: 1.02–1.41), N1-acetylspermidine (OR per 1 SD, 1.34; 95% CI: 1.12–1.60), and diacetylspermine (OR per 1 SD, 1.20; 95% CI: 1.02–1.41). In the stratified analysis according to the dietary intervention, the lower HF risk associated with arginine was restricted to participants in the MedDiet groups (P-interaction = 0.044). Conclusions Our results suggest that arginine catabolism metabolites could be involved in AF and HF. Interventions with the MedDiet may contribute to strengthen the inverse association between arginine and the risk of HF. This trial was registered at controlled-trials.com as ISRCTN35739639

    Circulating citric acid cycle metabolites and risk of cardiovascular disease in the PREDIMED study

    Get PDF
    Background and aim Plasma citric acid cycle (CAC) metabolites might be likely related to cardiovascular disease (CVD). However, studies assessing the longitudinal associations between circulating CAC-related metabolites and CVD risk are lacking. The aim of this study was to evaluate the association of baseline and 1-year levels of plasma CAC-related metabolites with CVD incidence (a composite of myocardial infarction, stroke or cardiovascular death), and their interaction with Mediterranean diet interventions. Methods and results Case-cohort study from the PREDIMED trial involving participants aged 55–80 years at high cardiovascular risk, allocated to MedDiets or control diet. A subcohort of 791 participants was selected at baseline, and a total of 231 cases were identified after a median follow-up of 4.8 years. Nine plasma CAC-related metabolites (pyruvate, lactate, citrate, aconitate, isocitrate, 2-hydroxyglutarate, fumarate, malate and succinate) were measured using liquid chromatography-tandem mass spectrometry. Weighted Cox multiple regression was used to calculate hazard ratios (HRs). Baseline fasting plasma levels of 3 metabolites were associated with higher CVD risk, with HRs (for each standard deviation, 1-SD) of 1.46 (95%CI:1.20–1.78) for 2-hydroxyglutarate, 1.33 (95%CI:1.12–1.58) for fumarate and 1.47 (95%CI:1.21–1.78) for malate (p of linear trend <0.001 for all). A higher risk of CVD was also found for a 1-SD increment of a combined score of these 3 metabolites (HR = 1.60; 95%CI: 1.32–1.94, p trend <0.001). This result was replicated using plasma measurements after one-year. No interactions were detected with the nutritional intervention. Conclusion Plasma 2-hydroxyglutarate, fumarate and malate levels were prospectively associated with increased cardiovascular risk

    Plasma lipidome and risk of atrial fibrillation: results from the PREDIMED trial

    Get PDF
    The potential role of the lipidome in atrial fibrillation (AF) development is still widely unknown. We aimed to assess the association between lipidome profiles of the Prevención con Dieta Mediterránea (PREDIMED) trial participants and incidence of AF. We conducted a nested case-control study (512 incident centrally adjudicated AF cases and 735 controls matched by age, sex, and center). Baseline plasma lipids were profiled using a Nexera X2 U-HPLC system coupled to an Exactive Plus orbitrap mass spectrometer. We estimated the association between 216 individual lipids and AF using multivariable conditional logistic regression and adjusted the p values for multiple testing. We also examined the joint association of lipid clusters with AF incidence. Hitherto, we estimated the lipidomics network, used machine learning to select important network-clusters and AF-predictive lipid patterns, and summarized the joint association of these lipid patterns weighted scores. Finally, we addressed the possible interaction by the randomized dietary intervention.Forty-one individual lipids were associated with AF at the nominal level (p < 0.05), but no longer after adjustment for multiple-testing. However, the network-based score identified with a robust data-driven lipid network showed a multivariable-adjusted ORper+1SD of 1.32 (95% confidence interval: 1.16-1.51; p < 0.001). The score included PC plasmalogens and PE plasmalogens, palmitoyl-EA, cholesterol, CE 16:0, PC 36:4;O, and TG 53:3. No interaction with the dietary intervention was found. A multilipid score, primarily made up of plasmalogens, was associated with an increased risk of AF. Future studies are needed to get further insights into the lipidome role on AF.Current Controlled Trials number, ISRCTN35739639

    Isotemporal substitution of inactive time with physical activity and time in bed: cross-sectional associations with cardiometabolic health in the PREDIMEDPlus study

    Get PDF
    Background: This study explored the association between inactive time and measures of adiposity, clinical parameters, obesity, type 2 diabetes and metabolic syndrome components. It further examined the impact of reallocating inactive time to time in bed, light physical activity (LPA) or moderate-to-vigorous physical activity (MVPA) on cardio-metabolic risk factors, including measures of adiposity and body composition, biochemical parameters and blood pressure in older adults. Methods: This is a cross-sectional analysis of baseline data from 2189 Caucasian men and women (age 55-75 years, BMI 27-40 Kg/m2) from the PREDIMED-Plus study (http://www.predimedplus.com/). All participants had ≥3 components of the metabolic syndrome. Inactive time, physical activity and time in bed were objectively determined using triaxial accelerometers GENEActiv during 7 days (ActivInsights Ltd., Kimbolton, United Kingdom). Multiple adjusted linear and logistic regression models were used. Isotemporal substitution regression modelling was performed to assess the relationship of replacing the amount of time spent in one activity for another, on each outcome, including measures of adiposity and body composition, biochemical parameters and blood pressure in older adults. Results: Inactive time was associated with indicators of obesity and the metabolic syndrome. Reallocating 30 min per day of inactive time to 30 min per day of time in bed was associated with lower BMI, waist circumference and glycated hemoglobin (HbA1c) (all p-values < 0.05). Reallocating 30 min per day of inactive time with 30 min per day of LPA or MVPA was associated with lower BMI, waist circumference, total fat, visceral adipose tissue, HbA1c, glucose, triglycerides, and higher body muscle mass and HDL cholesterol (all p-values < 0.05). Conclusions: Inactive time was associated with a poor cardio-metabolic profile. Isotemporal substitution of inactive time with MVPA and LPA or time in bed could have beneficial impact on cardio-metabolic health

    Relationship between olive oil consumption and ankle-brachial pressure index in a population at high cardiovascular risk

    Get PDF
    The aim of this study was to ascertain the association between the consumption of different categories of edible olive oils (virgin olive oils and olive oil) and olive pomace oil and ankle-brachial pressure index (ABI) in participants in the PREDIMED-Plus study, a trial of lifestyle modification for weight and cardiovascular event reduction in individuals with overweight/obesity harboring the metabolic syndrome. Methods: We performed a cross-sectional analysis of the PREDIMED-Plus trial. Consumption of any category of olive oil and olive pomace oil was assessed through a validated food-frequency questionnaire. Multivariable linear regression models were fitted to assess associations between olive oil consumption and ABI. Additionally, ABI ≤1 was considered as the outcome in logistic models with different categories of olive oil and olive pomace oil as exposure. Results: Among 4330 participants, the highest quintile of total olive oil consumption (sum of all categories of olive oil and olive pomace oil) was associated with higher mean values of ABI (beta coefficient: 0.014, 95% confidence interval [CI]: 0.002, 0.027) (p for trend = 0.010). Logistic models comparing the consumption of different categories of olive oils, olive pomace oil and ABI ≤1 values revealed an inverse association between virgin olive oils consumption and the likelihood of a low ABI (odds ratio [OR] 0.73, 95% CI [0.56, 0.97]), while consumption of olive pomace oil was positively associated with a low ABI (OR 1.22 95% CI [1.00, 1.48]). Conclusions: In a Mediterranean population at high cardiovascular risk, total olive oil consumption was associated with a higher mean ABI. These results suggest that olive oil consumption may be beneficial for peripheral artery disease prevention, but longitudinal studies are needed

    Long daytime napping is associated with increased adiposity and type 2 diabetes in an elderly population with metabolic syndrome

    Get PDF
    Research examining associations between objectively-measured napping time and type 2 diabetes (T2D) is lacking. This study aimed to evaluate daytime napping in relation to T2D and adiposity measures in elderly individuals from the Mediterranean region. A cross-sectional analysis of baseline data from 2190 elderly participants with overweight/obesity and metabolic syndrome, in the PREDIMED-Plus trial, was carried out. Accelerometer-derived napping was measured. Prevalence ratios (PR) and 95% confidence intervals (CI) for T2D were obtained using multivariable-adjusted Cox regression with constant time. Linear regression models were fitted to examine associations of napping with body mass index (BMI) and waist circumference (WC). Participants napping ≥90 min had a higher prevalence of T2D (PR 1.37 (1.06, 1.78)) compared with those napping 5 to <30 min per day. Significant positive associations with BMI and WC were found in those participants napping ≥30 min as compared to those napping 5 to <30 min per day. The findings of this study suggest that longer daytime napping is associated with higher T2D prevalence and greater adiposity measures in an elderly Spanish population at high cardiovascular risk

    Total and Subtypes of Dietary Fat Intake and Its Association with Components of the Metabolic Syndrome in a Mediterranean Population at High Cardiovascular Risk

    Get PDF
    Background: The effect of dietary fat intake on the metabolic syndrome (MetS) and in turn on cardiovascular disease (CVD) remains unclear in individuals at high CVD risk. Objective: To assess the association between fat intake and MetS components in an adult Mediterranean population at high CVD risk. Design: Baseline assessment of nutritional adequacy in participants (n = 6560, men and women, 55-75 years old, with overweight/obesity and MetS) in the PREvención con DIeta MEDiterránea (PREDIMED)-Plus randomized trial. Methods: Assessment of fat intake (total fat, monounsatured fatty acids: MUFA, polyunsaturated fatty acids: PUFA, saturated fatty acids: SFA, trans-fatty acids: trans-FA, linoleic acid, α-linolenic acid, and ω-3 FA) using a validated food frequency questionnaire, and diet quality using 17-item Mediterranean dietary questionnaire and fat quality index (FQI). Results: Participants in the highest quintile of total dietary fat intake showed lower intake of energy, carbohydrates, protein and fiber, but higher intake of PUFA, MUFA, SFA, TFA, LA, ALA and ω-3 FA. Differences in MetS components were found according to fat intake. Odds (5th vs. 1st quintile): hyperglycemia: 1.3-1.6 times higher for total fat, MUFA, SFA and ω-3 FA intake; low high-density lipoprotein cholesterol (HDL-c): 1.2 higher for LA; hypertriglyceridemia: 0.7 lower for SFA and ω-3 FA intake. Conclusions: Dietary fats played different role on MetS components of high CVD risk patients. Dietary fat intake was associated with higher risk of hyperglycemia
    corecore