5 research outputs found

    Quantitative Proteomics of Cerebrospinal Fluid in Paediatric Pneumococcal Meningitis

    Get PDF
    Streptococcus pneumoniae is responsible for diseases causing major global public health problems, including meningitis, pneumonia and septicaemia. Despite recent advances in antimicrobial therapy, pneumococcal meningitis remains a life-threatening disease. Furthermore, long-term sequelae are a major concern for survivors. Hence, a better understanding of the processes occurring in the central nervous system is crucial to the development of more effective management strategies. We used mass spectrometry based quantitative proteomics to identify protein changes in cerebrospinal fluid from children with Streptococcus pneumoniae infection, compared with children admitted to hospital with bacterial meningitis symptoms but negative diagnosis. Samples were analysed, by label free proteomics, in two independent cohorts (cohort 1: cases (n = 8) and hospital controls (n = 4); cohort 2: cases (n = 8), hospital controls (n = 8)). Over 200 human proteins were differentially expressed in each cohort, of which 65% were common to both. Proteins involved in the immune response and exosome signalling were significantly enriched in the infected samples. For a subset of proteins derived from the proteome analysis, we corroborated the proteomics data in a third cohort (hospital controls (n = 15), healthy controls (n = 5), cases (n = 20)) by automated quantitative western blotting, with excellent agreement with our proteomics findings. Proteomics data are available via ProteomeXchange with identifier PXD004219

    MEERCAT: Multiplexed Efficient Cell Free Expression of Recombinant QconCATs For Large Scale Absolute Proteome Quantification

    Get PDF
    A major challenge in proteomics is the absolute accurate quantification of large numbers of proteins. QconCATs, artificial proteins that are concatenations of multiple standard peptides, are well established as an efficient means to generate standards for proteome quantification. Previously, QconCATs have been expressed in bacteria, but we now describe QconCAT expression in a robust, cell-free system. The new expression approach rescues QconCATs that previously were unable to be expressed in bacteria and can reduce the incidence of proteolytic damage to QconCATs. Moreover, it is possible to cosynthesize QconCATs in a highly-multiplexed translation reaction, coexpressing tens or hundreds of QconCATs simultaneously. By obviating bacterial culture and through the gain of high level multiplexing, it is now possible to generate tens of thousands of standard peptides in a matter of weeks, rendering absolute quantification of a complex proteome highly achievable in a reproducible, broadly deployable system. One of the major challenges in proteomics is absolute quantification of individual proteins. The predominant technology in large scale protein quantification is MS of (usually tryptic) peptides derived from proteolysis of the proteome in vitro and it is well understood that although mass spectrometers can deliver linearity of response over many orders of magnitude, the response factor (signal intensity per mol of peptide) varies considerably among individual peptides (1, 2). One outcome is that commonly used “label-free” methods that sum the precursor ion intensities for the peptides derived from a single protein, are excellent for relative quantification, but are less satisfactory for absolute quantification. MS-based absolute quantification of proteins can be supported by external standards that are analyzed before and/or after the analyte or by stable-isotope labeled internal standards that are coanalyzed and which define the response factor for each peptide (3). These peptides can be individually synthesized and quantified (4) and there have been some remarkable large-scale studies. However, large numbers of accurately quantified peptides are costly. Further, a commercially produced, accurately quantified standard peptide is a finite resource and is hence best focused on low numbers of assays of a small number of target proteins. Intact protein standards (5⇓–7), or large fragments (8) provide multiple potential peptides for quantification of the targets. In 2005, a novel approach to the creation of standard peptides by biosynthesis was proposed in the form of QconCATs (9⇓⇓⇓–13). QconCATs are artificial proteins that are concatenations of standard peptides from multiple natural proteins, sometimes interspersed by short peptides to recapitulate the primary sequence context of the natural counterpart (14, 15). Peptides suitable for quantification are referred to as Q-peptides, and are not synonymous with proteotypic peptides, as the latter term refers to peptides, unique to one protein, that drive protein identification, not quantification. QconCATs genes are synthesized de novo and are routinely expressed in E. coli cultured in media supplemented with appropriate stable isotope labeled amino acids, such that peptides derived from QconCATs are discriminable from natural peptides within the mass spectrometer. The purified QconCATs are mixed with the biological analyte sample and coproteolyzed to generate a mixture of labeled (standard) and unlabeled (analyte) peptide pairs that can be analyzed by liquid chromatography coupled to MS to yield absolute quantification of the analyte proteins. QconCATs have the added advantage that with appropriate control of proteolysis (11) all standards are, by definition, in a 1:1 ratio, rendering independent quantification of each standard unnecessary; a single common peptide can function to quantify the QconCAT (13). However, successful expression of novel QconCATs in E. coli is not always guaranteed. In a large-scale quantification project that used over 100 independently designed and expressed QconCATs, we discovered that ∼1 in 10 of the concatamers would fail to express, even when a range of expression conditions were explored. Further, at a low frequency, some QconCATs were prone to proteolysis in the bacterial cell or during purification, rendering them of reduced value for quantification. Effective QconCAT deployment across large scale proteome quantification studies would require a high level of confidence in expression of every new construct. In addition, living-cell based synthesis systems are not ideal for high-throughput preparation of multiple QconCATs and many mass spectrometry laboratories are not equipped for the basic molecular biology that would be needed to subclone and express recombinant proteins. To enhance the potential of QconCAT technology for large-scale proteome quantification, we here focus on a wheat germ cell-free protein synthesis system (WGCFS)1 as a major enhancement to the workflow of high throughput QconCAT synthesis. WGCFS, which uses the powerful translation system for germination stored in wheat germ, realizes the highest yield of translation among commercially available eukaryotic derived cell-free systems (16⇓⇓⇓–20). Using WGCFS, we previously demonstrated the feasibility of synthesis of single, small QconCATs, typically 25 kDa (21). In the present study, we first assessed whether WGCFS could be used to express more typical QconCATs at approx. 60 kDa (for quantification of ∼25 proteins at two peptides per target protein), whether WGCFS would rescue “failed” QconCATs and whether this cell free system was able to reduce the risk of proteolytic degradation. Further, we established whether an additional step in efficiency could be derived from coexpression of multiple QconCATs in a single WGCFS reaction

    Marine Synechococcus sp. Strain WH7803 Shows Specific Adaptative Responses to Assimilate Nanomolar Concentrations of Nitrate

    Get PDF
    Marine Synechococcus, together with Prochlorococcus, contribute to a significant proportion of the primary production on Earth. The spatial distribution of these two groups of marine picocyanobacteria depends on different factors such as nutrient availability and temperature. Some Synechococcus ecotypes thrive in mesotrophic and moderately oligotrophic waters, where they exploit both oxidized and reduced forms of nitrogen. Here, we present a comprehensive study, which includes transcriptomic and proteomic analyses of the response of Synechococcus sp. strain WH7803 to nanomolar concentrations of nitrate, compared to micromolar ammonium or nitrogen starvation. We found that Synechococcus has a specific response to a nanomolar nitrate concentration that differs from the response shown under nitrogen starvation or the presence of standard concentrations of either ammonium or nitrate. This fact suggests that the particular response to the uptake of nanomolar concentrations of nitrate could be an evolutionary advantage for marine Synechococcus against Prochlorococcus in the natural environment. IMPORTANCE Marine Synechococcus are a very abundant group of photosynthetic organisms on our planet. Previous studies have shown blooms of these organisms when nanomolar concentrations of nitrate become available. We have assessed the effect of nanomolar nitrate concentrations by studying the transcriptome and proteome of Synechococcus sp. WH7803, together with some physiological parameters. We found evidence that Synechococcus sp. strain WH7803 does sense and react to nanomolar concentrations of nitrate, suggesting the occurrence of specific adaptive mechanisms to allow their utilization. Thus, very low concentrations of nitrate in the ocean seem to be a significant nitrogen source for marine picocyanobacteria

    Integrated Proteomic and Metabolomic Analyses Show Differential Effects of Glucose Availability in Marine <i>Synechococcus</i> and <i>Prochlorococcus</i>

    No full text
    We compared changes induced by the addition of 100 nM and 5 mM glucose on the proteome and metabolome complements in Synechococcus sp. strains WH8102, WH7803, and BL107 and Prochlorococcus sp. strains MED4, SS120, and MIT9313, grown either under standard light conditions or in darkness. Our results suggested that glucose is metabolized by these cyanobacteria, using primarily the oxidative pentoses and Calvin pathways, while no proof was found for the involvement of the Entner-Doudoroff pathway in this process. We observed differences in the effects of glucose availability, both between genera and between Prochlorococcus MED4 and SS120 strains, which might be related to their specific adaptations to the environment. We found evidence for fermentation in Prochlorococcus sp. strain SS120 and Synechococcus sp. strain WH8102 after 5 mM glucose addition. Our results additionally suggested that marine cyanobacteria can detect nanomolar glucose concentrations in the environment and that glucose might be used to sustain metabolism under darkness. Furthermore, the KaiB and KaiC proteins were also affected in Synechococcus sp. WH8102, pointing to a direct link between glucose assimilation and circadian rhythms in marine cyanobacteria. In conclusion, our study provides a wide overview on the metabolic effects induced by glucose availability in representative strains of the diverse marine picocyanobacteria, providing further evidence for the importance of mixotrophy in marine picocyanobacteria. IMPORTANCE Glucose uptake by marine picocyanobacteria has been previously described and strongly suggests they are mixotrophic organisms (capable of using energy from the sun to make organic matter, but also to directly use organic matter from the environment when available). However, a detailed analysis of the effects of glucose addition on the proteome and metabolome of these microorganisms had not been carried out. Here, we analyzed three Prochlorococcus sp. and three Synechococcus sp. strains which were representative of several marine picocyanobacterial clades. We observed differential features in the effects of glucose availability, depending on both the genus and strain; our study illuminated the strategies utilized by these organisms to metabolize glucose and showed unexpected links to other pathways, such as circadian regulation. Furthermore, we found glucose addition had profound effects in the microbiome, favoring the growth of coexisting heterotrophic bacteria
    corecore