2,763 research outputs found

    Influenza-Associated Disseminated Aspergillosis in a 9-Year-Old Girl Requiring ECMO Support

    Get PDF
    Nens; Influenza humana; IsavuconazolNiños; Influenza humana; IsavuconazolChildren; Human influenza; IsavuconazoleA previously healthy 9-year-old girl developed fulminant myocarditis due to severe influenza A infection complicated with methicillin-resistant Staphylococcus aureus pneumonia, requiring extracorporeal membrane oxygenation (ECMO) support. Twelve days after admission, Aspergillus fumigatus was isolated in tracheal aspirate, and 12 h later she suddenly developed anisocoria. Computed tomography (CT) of the head showed fungal brain lesions. Urgent decompressive craniectomy with lesion drainage was performed; histopathology found hyphae in surgical samples, culture-positive for Aspergillus fumigatus (susceptible to azoles, echinocandins, and amphotericin B). Extension workup showed disseminated aspergillosis. After multiple surgeries and combined antifungal therapy (isavuconazole plus liposomal amphotericin B), her clinical course was favorable. Isavuconazole therapeutic drug monitoring was performed weekly. Extensive immunological study ruled out primary immunodeficiencies. Fluorine-18 fluorodeoxyglucose positron emission tomography/CT (18F-FDG PET/CT) follow-up showed a gradual decrease in fungal lesions. Influenza-associated pulmonary aspergillosis is well-recognized in critically ill adult patients, but pediatric data are scant. Clinical features described in adults concur with those of our case. Isavuconazole, an off-label drug in children, was chosen because our patient had severe renal failure. To conclude, influenza-associated pulmonary aspergillosis is uncommon in children admitted to intensive care for severe influenza, but pediatricians should be highly aware of this condition to enable prompt diagnosis and treatment.This work received no external funding

    Dynamical cloud formation traced by atomic and molecular gas

    Get PDF
    Context. Atomic and molecular cloud formation is a dynamical process. However, kinematic signatures of these processes are still observationally poorly constrained. Aims. We identify and characterize the cloud formation signatures in atomic and molecular gas. Methods. Targeting the cloud-scale environment of the prototypical infrared dark cloud G28.3, we employed spectral line imaging observations of the two atomic lines HI and [CI] as well as molecular lines observations in 13CO in the 1–0 and 3–2 transitions. The analysis comprises investigations of the kinematic properties of the different tracers, estimates of the mass flow rates, velocity structure functions, a histogram of oriented gradients (HOG) study, and comparisons to simulations. Results. The central infrared dark cloud (IRDC) is embedded in a more diffuse envelope of cold neutral medium traced by HI self-absorption and molecular gas. The spectral line data as well as the HOG and structure function analysis indicate a possible kinematic decoupling of the HI from the other gas compounds. Spectral analysis and position–velocity diagrams reveal two velocity components that converge at the position of the IRDC. Estimated mass flow rates appear rather constant from the cloud edge toward the center. The velocity structure function analysis is consistent with gas flows being dominated by the formation of hierarchical structures. Conclusions. The observations and analysis are consistent with a picture where the IRDC G28.3 is formed at the center of two converging gas flows. While the approximately constant mass flow rates are consistent with a self-similar, gravitationally driven collapse of the cloud, external compression (e.g., via spiral arm shocks or supernova explosions) cannot be excluded yet. Future investigations should aim at differentiating the origin of such converging gas flows

    Voriconazole Use in Children: Therapeutic Drug Monitoring and Control of Inflammation as Key Points for Optimal Treatment

    Get PDF
    Infeccions fúngiques pediàtriques; Monitorització terapèutica de fàrmacs; VoriconazolInfecciones fúngicas pediátricas; Monitorización terapéutica de fármacos; VoriconazolPaediatric fungal infections; Therapeutic drug monitoring; VoriconazoleVoriconazole plasma concentrations (PC) are highly variable, particularly in children. Dose recommendations in 2–12-year-old patients changed in 2012. Little data on therapeutic drug monitoring (TDM) after these new recommendations are available. We aimed to evaluate voriconazole monitoring in children with invasive fungal infection (IFI) after implementation of new dosages and its relationship with safety and effectiveness. A prospective, observational study, including children aged 2–12 years, was conducted. TDM was performed weekly and doses were changed according to an in-house protocol. Effectiveness, adverse events, and factors influencing PC were analysed. A total of 229 PC from 28 IFI episodes were obtained. New dosing led to a higher rate of adequate PC compared to previous studies; still, 35.8% were outside the therapeutic range. In patients aged < 8 years, doses to achieve therapeutic levels were higher than recommended. Severe hypoalbuminemia and markedly elevated C-reactive protein were related to inadequate PC. Therapeutic PC were associated with drug effectiveness and safety. Higher doses in younger patients and a dose adjustment protocol based on TDM should be considered. Voriconazole PC variability has decreased with current updated recommendations, but it remains high and is influenced by inflammatory status. Additional efforts to control inflammation in children with IFI should be encouraged.This research was funded by an Investigator Sponsored Research Grant from Pfizer (Grant Number WI182544

    Tunable Energy-Transfer Process in Heterometallic MOF Materials Based on 2,6-Naphthalenedicarboxylate: Solid-State Lighting and Near-Infrared Luminescence Thermometry

    Get PDF
    Trivalent lanthanide ions (Ln3+) are used to prepare a plethora of coordination compounds, with metal-organic frameworks (MOFs) being among the most sought-after in recent years. The porosity of Ln-MOFs is often complemented by the luminescence imparted by the metal centers, making them attractive multifunctional materials. Here, we report a class of three-dimensional (3D) MOFs obtained from a solvothermal reaction between 2,6-naphthalenedicarboxylic acid (H2NDC) and lanthanide chlorides, yielding three types of compounds depending on the chosen lanthanide: [LnCl(NDC)(DMF)] for Ln3+ = La3+, Ce3+, Pr3+, Nd3+, Sm3+ (type 1), [Eu(NDC)1.5(DMF)]·0.5DMF (type 2), and [Ln2(NDC)3(DMF)2] for Ln3+ = Tb3+, Dy3+, Y3+, Er3+, Yb3+ (type 3). Photoluminescent properties of selected phases were explored at room temperature. The luminescence thermometry capability of Yb3+-doped Nd-MOF was fully investigated in the 15-300 K temperature range under 365 and 808 nm excitation. To describe the optical behavior of the isolated MOFs, we introduce the total energy-transfer balance model. Therein, the sum of energy-transfer rates is considered along with its dependence on the temperature - the sign, magnitude, and variation of this parameter - permitting to afford a thorough interpretation of the observed behavior of the luminescent species of all materials presented here. The combination of novel theoretical and experimental studies presented herein to describe energy-transfer processes in luminescent materials can pave the way toward the design of MOF-based chemical and physical sensors working in an optical range of interest for biomedical applications.Fil: Gomez, Germán Ernesto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Investigaciones en Tecnología Química. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Instituto de Investigaciones en Tecnología Química; ArgentinaFil: Marin, Riccardo. University of Ottawa; CanadáFil: Carneiro Neto, Albano N.. Universidade de Aveiro; PortugalFil: Botas, Alexandre M. P.. Universidade de Aveiro; PortugalFil: Ovens, Jeffrey. University of Ottawa; CanadáFil: Kitos, Alexandros A.. University of Ottawa; CanadáFil: Bernini, Maria Celeste. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Investigaciones en Tecnología Química. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Instituto de Investigaciones en Tecnología Química; ArgentinaFil: Carlos, Luís D.. Universidade de Aveiro; PortugalFil: Soler Illia, Galo Juan de Avila Arturo. Universidad Nacional de San Martin. Instituto de Nanosistemas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Murugesu, Muralee. University of Ottawa; Canad

    Atomic layering at the liquid silicon surface: a first- principles simulation

    Full text link
    We simulate the liquid silicon surface with first-principles molecular dynamics in a slab geometry. We find that the atom-density profile presents a pronounced layering, similar to those observed in low-temperature liquid metals like Ga and Hg. The depth-dependent pair correlation function shows that the effect originates from directional bonding of Si atoms at the surface, and propagates into the bulk. The layering has no major effects in the electronic and dynamical properties of the system, that are very similar to those of bulk liquid Si. To our knowledge, this is the first study of a liquid surface by first-principles molecular dynamics.Comment: 4 pages, 4 figures, submitted to PR

    Voriconazole Use in Children : Therapeutic Drug Monitoring and Control of Inflammation as Key Points for Optimal Treatment

    Get PDF
    Voriconazole plasma concentrations (PC) are highly variable, particularly in children. Dose recommendations in 2-12-year-old patients changed in 2012. Little data on therapeutic drug monitoring (TDM) after these new recommendations are available. We aimed to evaluate voriconazole monitoring in children with invasive fungal infection (IFI) after implementation of new dosages and its relationship with safety and effectiveness. A prospective, observational study, including children aged 2-12 years, was conducted. TDM was performed weekly and doses were changed according to an in-house protocol. Effectiveness, adverse events, and factors influencing PC were analysed. A total of 229 PC from 28 IFI episodes were obtained. New dosing led to a higher rate of adequate PC compared to previous studies; still, 35.8% were outside the therapeutic range. In patients aged < 8 years, doses to achieve therapeutic levels were higher than recommended. Severe hypoalbuminemia and markedly elevated C-reactive protein were related to inadequate PC. Therapeutic PC were associated with drug effectiveness and safety. Higher doses in younger patients and a dose adjustment protocol based on TDM should be considered. Voriconazole PC variability has decreased with current updated recommendations, but it remains high and is influenced by inflammatory status. Additional efforts to control inflammation in children with IFI should be encouraged
    • …
    corecore