115 research outputs found

    Atmospheric gravitational tides of Earth-like planets orbiting low-mass stars

    Full text link
    Temperate terrestrial planets orbiting low-mass stars are subject to strong tidal forces. The effects of gravitational tides on the solid planet and that of atmospheric thermal tides have been studied, but the direct impact of gravitational tides on the atmosphere itself has so far been ignored. We first develop a simplified analytic theory of tides acting on the atmosphere of a planet. We then implement gravitational tides into a general circulation model of a static-ocean planet in a short-period orbit around a low-mass star -- the results agree with our analytic theory. Because atmospheric tides and solid-body tides share a scaling with the semi-major axis, we show that there is a maximum amplitude of the atmospheric tide that a terrestrial planet can experience while still having a solid surface; Proxima Centauri b is the poster child for a planet that could be geophysically Earth-like but with atmospheric tides more than 500×\times stronger than Earth's. In this most extreme scenario, we show that atmospheric tides significantly impact the planet's meteorology -- but not its climate. Two possible modest climate impacts are enhanced longitudinal heat transport and cooling of the lowest atmospheric layers. The strong radiative forcing of such planets dominates over gravitational tides, unlike moons of cold giant planets, such as Titan. We speculate that atmospheric tides could be climatologically important on planets where the altitude of maximal tidal forcing coincides with the altitude of cloud formation and that the effect could be detectable for non-Earth-like planets subject to even greater tides

    Post-Glacial Isostatic Adjustment and Global Warming in Subarctic Canada: Implications for Islands of the James Bay Region

    Get PDF
    When Rupert’s Land and the North-Western Territory became a part of Canada as the Northwest Territories in 1870, the islands of James Bay were included within the new territorial boundaries. These same islands became a part of Nunavut in 1999, when the new territory was created from the eastern region of the Northwest Territories. Although the James Bay islands remain part of Nunavut, the western James Bay Cree assert that the western James Bay islands, including Akimiski Island, were part of the Cree traditional territory and that these islands have never been surrendered through treaty. This land-claim issue is further complicated by the fact that glacial isostatic adjustment (GIA) is occurring in the James Bay region and that the islands of James Bay may one day become part of mainland Ontario or Quebec. We used numerical models of the GIA process to predict how shorelines in James Bay will migrate over the next 1000 years as a result of post-glacial sea-level changes. These predictions, which were augmented by an additional contribution associated with sea-level rise due to global warming, were used to determine whether the islands in James Bay will ever become part of the mainland. The predictions for the islands are sensitive to the two primary inputs into the GIA predictions, namely the models for the geometry of the ancient Laurentide ice sheet and the viscoelastic structure adopted for the solid earth, as well as to the amplitude of the projected global warming signal. Nevertheless, it was found that many of the smaller and larger islands of James Bay will likely join the mainland of either Ontario or Quebec. For example, using a global warming scenario of 1.8 mm sea-level rise per year, a plausible range of GIA models suggests that the Strutton Islands and Cape Hope Islands will join mainland Quebec in ~400 years or more, while Akimiski Island will take at least ~700 years to join mainland Ontario. Using the same GIA models, but incorporating the upper boundary of global warming scenarios of 5.9 mm sea-level rise per year, the Strutton Islands and Cape Hope Islands are predicted to join mainland Quebec in ~600 years or more, and Akimiski Island is predicted not to join mainland Ontario. Since Akimiski Island is already being prospected for diamonds and the future ownership of emergent land remains an issue, these findings have great economic importance.Quand la Terre de Rupert et le Territoire du Nord-Ouest ont joint les rangs du Canada sous le nom de Territoires du Nord-Ouest en 1870, les Ăźles de la baie James ont Ă©tĂ© intĂ©grĂ©es aux nouvelles frontiĂšres territoriales. Ces mĂȘmes Ăźles font maintenant partie du Nunavut depuis 1999, lorsque le nouveau territoire a Ă©tĂ© crĂ©Ă© Ă  partir de la rĂ©gion est des Territoires du Nord-Ouest. Bien que les Ăźles de la baie James fassent toujours partie du Nunavut, les Cris de l’ouest de la baie James soutiennent que les Ăźles du cĂŽtĂ© ouest de la baie James, dont l’üle Akimiski, faisaient partie du territoire traditionnel cri et que ces Ăźles n’ont jamais Ă©tĂ© cĂ©dĂ©es par l’intermĂ©diaire d’un traitĂ©. Cette revendication territoriale est davantage compliquĂ©e par le fait qu’un ajustement isostatique glaciaire est en train de se produire dans la rĂ©gion de la baie James au point oĂč un de ces jours, les Ăźles de la baie James pourraient faire partie de la partie continentale de l’Ontario ou du QuĂ©bec. Nous avons employĂ© des modĂšles numĂ©riques du processus d’ajustement isostatique pour prĂ©dire de quelle maniĂšre les littoraux de la baie James migreront au cours des 1000 prochaines annĂ©es en raison des changements postglaciaires caractĂ©risant le niveau de la mer. Ces prĂ©visions, qui ont Ă©tĂ© enrichies de donnĂ©es supplĂ©mentaires se rapportant Ă  l’élĂ©vation du niveau de la mer attribuable au rĂ©chauffement climatique, ont Ă©tĂ© utilisĂ©es pour dĂ©terminer si les Ăźles de la baie James feront un jour partie du continent. Les prĂ©visions relatives aux Ăźles sont sensibles Ă  deux intrants principaux en matiĂšre de prĂ©visions d’ajustement isostatique, notamment les modĂšles de gĂ©omĂ©trie de la nappe glaciaire du Laurentien ancien ainsi que la structure viscoĂ©lastique adoptĂ©e pour la croĂ»te terrestre, de mĂȘme qu’à l’amplitude du signal projetĂ© relativement au rĂ©chauffement climatique. NĂ©anmoins, nous avons dĂ©terminĂ© que grand nombre des Ăźles plus petites et plus grosses de la baie James se rattacheront vraisemblablement Ă  la partie continentale de l’Ontario ou du QuĂ©bec. Par exemple, en s’appuyant sur un scĂ©nario de rĂ©chauffement climatique donnant lieu Ă  une Ă©lĂ©vation du niveau de la mer de 1,8 mm par annĂ©e, une Ă©tendue plausible pour les modĂšles d’ajustement isostatique laisse entendre que les Ăźles Strutton et les Ăźles du cap Hope rejoindront la partie continentale du QuĂ©bec dans environ 400 ans ou plus, tandis que l’üle Akimiski mettra environ 700 ans Ă  s’intĂ©grer Ă  la partie continentale de l’Ontario. À l’aide des mĂȘmes modĂšles d’ajustement isostatique, mais en tenant compte de la borne supĂ©rieure des scĂ©narios de rĂ©chauffement climatique qui correspond Ă  une Ă©lĂ©vation du niveau de la mer de 5,9 mm par annĂ©e, les Ăźles Strutton et les Ăźles du cap Hope devraient rejoindre la partie continentale du QuĂ©bec dans environ 600 ans ou plus, tandis que l’üle Akimiski ne rejoindrait pas la partie continentale de l’Ontario. Puisque l’üle Akimiski fait dĂ©jĂ  l’objet de l’exploration de diamants et que l’appartenance future des terres Ă©mergentes constitue toujours un enjeu, ces observations revĂȘtement une grande importance du point de vue Ă©conomique

    Sea Level Change in the Western James Bay Region of Subarctic Ontario: Emergent Land and Implications for Treaty No. 9

    Get PDF
    In 1905 and 1906, the Cree of the southwestern James Bay region signed Treaty No. 9 whereby they relinquished to the Canadian government their claim to the lands south of the Albany River (the northern boundary of the province of Ontario at the time). The official text of Treaty No. 9 made no mention of land submerged below water cover, and thus the Cree did not relinquish such regions at that time. By contrast, the Cree of the northwestern James Bay and southwestern Hudson Bay region who signed the 1929–30 Adhesions to Treaty No. 9 relinquished their claims to “land covered by water” for the area bounded on the south by the northerly limit of Treaty No. 9, as this clause was specifically included in the text of the adhesion. The issue of “land covered by water” is significant because the western James Bay region has been, and will continue to be, subject to sea level changes associated with ongoing adjustments due to the last ice age and modern global warming signals. In the absence of detailed maps, we used models of these processes, constrained by available geophysical and geodetic data sets, to retrodict shoreline changes and the rate of land emergence over the last two centuries within the boundaries specified by Treaty No. 9. We also project shoreline migration to the end of the 21st century within the same region. The rate of land emergence since 1905 in the area south of the Albany River is estimated as ~3.0 km2/yr. Over the next century, land will continue to emerge in this region at a mean rate of ~1.4 km2/yr. This emergent land should be a subject of consideration within any comprehensive land claim put forward by the Cree; in this regard, it will be interesting to see how the Canadian judicial system and the Comprehensive Claims Branch handle the novel issue of emergent land.En 1905 et 1906, les Cris du sud-ouest de la rĂ©gion de la baie James ont signĂ© le TraitĂ© no 9, par le biais duquel ils ont cĂ©dĂ© au gouvernement du Canada leur droit de revendication des terres au sud de la riviĂšre Albany (la limite nord de la province de l’Ontario Ă  l’époque). Le texte officiel du TraitĂ© no 9 ne faisait aucune mention des terres submergĂ©es sous l’eau, si bien que les Cris n’ont pas renoncĂ© Ă  ces rĂ©gions Ă  ce moment-lĂ . En revanche, les Cris du nord-ouest de la baie James et du sud-ouest de la baie d’Hudson qui ont signĂ© les adhĂ©sions au TraitĂ© no 9 (1929-1930) ont renoncĂ© Ă  leurs revendications aux « terres recouvertes d’eau » dans la zone dĂ©limitĂ©e au sud par la limite nord du TraitĂ© no 9, puisque cette clause Ă©tait expressĂ©ment incluse dans le texte de l’adhĂ©sion. La question des « terres recouvertes d’eau » est importante parce que l’ouest de la rĂ©gion de la baie James a Ă©tĂ© et continuera d’ĂȘtre assujettie aux variations du niveau de la mer liĂ©es aux ajustements continus dĂ©coulant de la derniĂšre pĂ©riode glaciaire et des rĂ©cents signes de rĂ©chauffement planĂ©taire. En l’absence de cartes dĂ©taillĂ©es, nous avons utilisĂ© des modĂšles de ces processus, limitĂ©s par les ensembles de donnĂ©es gĂ©ophysiques et gĂ©odĂ©siques disponibles, pour dĂ©terminer de façon rĂ©trospective les changements du littoral et le taux d’émergence des terres au cours des deux derniers siĂšcles dans les limites prĂ©cisĂ©es dans le TraitĂ© no 9. Nous faisons Ă©galement une projection de la migration du littoral jusqu’à la fin du XXIe siĂšcle dans cette mĂȘme rĂ©gion. Le taux d’émergence des terres depuis 1905 dans la rĂ©gion au sud de la riviĂšre Albany est estimĂ© Ă  ~3,0 km2/annĂ©e. Au cours du prochain siĂšcle, les terres continueront d’émerger dans cette rĂ©gion au taux moyen de ~1,4 km2/annĂ©e. Ces terres Ă©mergĂ©es devraient ĂȘtre prises en compte dans toute revendication territoriale globale prĂ©sentĂ©e par les Cris. À cet Ă©gard, il sera intĂ©ressant de voir comment le systĂšme judiciaire canadien et la Direction gĂ©nĂ©rale des revendications globales traiteront cette nouvelle question des terres Ă©mergĂ©es

    Quantifying the Uncertainty in Ground-Based GNSS-Reflectometry Sea Level Measurements

    Get PDF
    Global Navigation Satellite System reflectometry (GNSS-R) tide gauges are a promising alternative to traditional tide gauges. However, the precision of GNSS-R sea-level measurements when compared to measurements from a colocated tide gauge is highly variable, with no clear indication of what causes the variability. Here, we present a modeling technique to estimate the precision of GNSS-R sea-level measurements that relies on creating and analyzing synthetic signal-to-noise-ratio (SNR) data. The modeled value obtained from the synthetic SNR data is compared to observed root mean square error between GNSS-R measurements and a colocated tide gauge at five sites and using two retrieval methods: spectral analysis and inverse modeling. We find that the inverse method is more precise than the spectral analysis method by up to 60 for individual measurements but the two methods perform similarly for daily and monthly means. We quantify the contribution of dominant effects to the variations in precision and find that noise is the dominant source of uncertainty for spectral analysis whereas the effect of the dynamic sea surface is the dominant source of uncertainty for the inverse method. Additionally, we test the sensitivity of sea-level measurements to the choice of elevation angle interval and find that the spectral analysis method is more sensitive to the choice of elevation angle interval than the inverse method due to the effect of noise, which is greater at larger elevation angle intervals. Conversely, the effect of tropospheric delay increases for lower elevation angle intervals but is generally a minor contribution
    • 

    corecore