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Abstract

This thesis focuses on the physics of static sea-level changes following variations in the distribu-

tion of grounded ice and the influence of these changes on the stability and dynamics of marine ice

sheets. Gravitational, deformational and rotational e↵ects associated with changes in grounded ice

mass lead to markedly non-uniform spatial patterns of sea-level change. I outline a revised theory

for computing post-glacial sea-level predictions and discuss the dominant physical e↵ects that con-

tribute to the patterns of sea-level change associated with surface loading on di↵erent timescales.

I show, in particular, that a large sea-level fall (rise) occurs in the vicinity of a retreating (ad-

vancing) ice sheet on both short and long timescales. I also present an application of the sea-level

theory in which I predict the sea-level changes associated with a new model of North American

ice sheet evolution and consider the implications of the results for e↵orts to establish the sources

of Meltwater Pulse 1A. These results demonstrate that viscous deformational e↵ects can influence

the amplitude of sea-level changes observed at far-field sea-level sites, even when the time window

being considered is relatively short ( 500 years).

Subsequently, I investigate the feedback of sea-level changes on marine ice-sheet stability and

dynamics by coupling a global sea-level model to ice-sheet models of increasing complexity. To

begin, I incorporate gravitationally self-consistent sea-level changes into an equilibrium marine ice-

sheet stability theory to show that the sea-level changes have a stabilizing influence on ice-sheet

retreat. Next, I consider the impact of the stabilizing mechanism on the timescale of ice-sheet retreat

using a 1D dynamic coupled ice sheet - sea level model. Simulations with the coupled model, which
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incorporate viscoelastic deformation of the solid Earth, show that local sea-level changes at the

grounding line act to slow, and in some cases, halt grounding-line migration. Finally, I confirm

the universality of this conclusion in a more realistic setting by coupling a 3-D, Antarctic Ice Sheet

(AIS) model to a global sea-level model and simulating the evolution of the AIS over the last 40,000

years.
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o
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o
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Figure 6.2 Changes in Antarctic grounded ice volume as a function of time over the last

40 ky. (A) Time series of total grounded Antarctic ice volume (in 106 km3). (B)

Time series of equivalent global mean (eustatic) sea-level change relative to the start

of the simulation at 40 ka (in meters), calculated by taking the volume of grounded

ice above floatation thickness, multiplying by the ratio of ice and water densities, and

dividing by the area of the modern ocean. Note that this quantity does not have an

exact 1-to-1 relationship with the total grounded volume plotted in (A). Solid curves

show simulations with the fully coupled ice sheet - sea level model (blue curve),

the uncoupled model (green curve), and the coupled model with an approximate

treatment of sea-surface height changes (red curve, “noIOG”). The dashed curves

are analogous with the solid, but with basal sliding coe�cients in modern oceanic

regions reduced from C
o

= 10�5 to C
o

= 10�6 m a�1 Pa�2. . . . . . . . . . . . . . . 113
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Figure 6.4 Impact of the treatment of sea-surface height changes on ice distribution. (A-
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Chapter 1

Introduction

In light of the potential for continued and increased global-scale warming of the climate, there has

been an increased focus on constraining the response of present-day ice reservoirs to climate change

and their contribution to sea-level rise. The stability of the Antarctic Ice Sheet (AIS), with a volume

that accounts for ⇠ 90% of all freshwater on the Earth’s surface (3 ⇥ 1016 m3, or ⇠70 meters of

equivalent globally averaged sea-level rise), is of particular concern. Much of the West Antarctic

Ice Sheet (WAIS) and large sectors of the East Antarctic Ice Sheet (EAIS) are characterized by a

marine-based setting, in which the base of the ice lies below the height of the sea surface. These

sectors are considered to be potentially susceptible to collapse in a warming climate.

Indeed, rapid collapse of ice shelves as well as thinning, retreat and acceleration of outlet

glaciers have recently been observed in marine sectors of Antarctica [e.g. Shepherd, 2001; Thomas,

2004; Rignot, 2006]. The ice-sheet modeling community is working towards understanding what

drives these changes and whether or not they evolve into a large-scale collapse of the ice sheet and

an associated, global-scale sea-level change. In addition to studying ongoing changes in the AIS,

a better understanding of the history of the ice sheet may help to establish whether the recent

evolution is within the range of natural variability and the conditions necessary to trigger large-

scale collapse. The work in this thesis contributes to improving our understanding of past and

1



future marine ice-sheet evolution by exploring the physics of the associated sea-level changes and

by coupling this physics to progressively more complex ice-sheet models.

We begin by asking the question: What is the geographic variability of sea-level change following

future retreat of the AIS? One might intuitively think that meltwater will fill the oceans like a

bathtub, raising sea levels everywhere by the same amount. In reality, it is now well-established that

a number of physical e↵ects will lead to a pattern of sea-level change characterized by significant

geographic variability. In Chapter 2, we summarize the work of Gomez et al. [2010b], which

computes the patterns of global sea-level change associated with the possible future collapse of

marine-based sectors of the AIS. The chapter outlines a revised theory for sea-level projections that

incorporates the gravitational, deformational and rotational e↵ects associated with the changing

surface (ice plus ocean) load. The theory allows shorelines to migrate to accommodate the onlap

and o✏ap of water at the edges of continents and the inundation of water into marine-based sectors

freed of ice. In addition to presenting the patterns, or “fingerprints”, of sea-level rise that would

follow the rapid collapse of the WAIS and marine sectors of the EAIS, we decompose the fingerprints

into contributions from the various aforementioned physical e↵ects.

In the case of rapid ice-sheet retreat considered in Gomez et al. [2010b] (i.e., retreat on timescales

of centuries or less), the Earth deforms elastically and sea-level changes are independent of the ice-

sheet history. However, large-scale ice-sheet evolution occurs over millennial timescales or longer,

and on these timescales, the Earth deforms viscoelastically with a magnitude and geometry that

depends on the full ice distribution history. Furthermore, the patterns of sea-level change that

emerge are distinct from those that dominate on short timescales. Chapter 2 ends with a discussion

of the physical e↵ects that contribute to sea-level changes on these longer timescales using the

results of a suite of illustrative ice-age sea-level simulations presented in Gomez et al. [2013]. The

discussion emphasizes, in particular, that at any given time during an ice sheet’s evolution, the
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total predicted sea-level change will be a combination of a short timescale signal governed by active

changes in the ice sheet, and a longer timescale signal associated with the past evolution of the ice

sheet.

In Chapter 3, the sea-level theory is applied to investigate an issue related to Meltwater Pulse

1A (mwp-1A), a rapid (< 500 year), ⇠ 20 meter pulse of sea-level rise that took place at ⇠14 ka

during the Last Deglaciation. mwp-1A has been observed in relative sea-level records at Barbados,

Tahiti and Sunda Shelf, however its source or sources are still uncertain [Deschamps et al., 2012].

Some have proposed that the meltwater came from the Laurentide Ice Sheet [e.g. Kennett and

Shackleton, 1975; Fairbanks et al., 1992; Peltier, 2004] but an analysis of the sea-level rise observed

at far field sites suggests that the AIS was a significant contributor to the event [Clark et al., 2002;

Bassett, 2005; Bard et al., 2010]. Recently, Gregoire et al. [2012] modeled the deglacial retreat of

ice sheets in the Northern Hemisphere and proposed that the collapse of an ice saddle between the

Laurentide and Cordilleran ice sheets could have been a dominant source of mwp-1A. We model

the sea-level changes associated with the ice-sheet evolution predicted by Gregoire et al. [2012] to

test whether the saddle collapse source is consistent with available sea-level records.

Chapters 2 and 3 focus on the impact that ice sheets have on sea-level change. In the remaining

chapters of this thesis, we investigate how sea-level changes feedback into the stability and dynamics

of ice sheets. This feedback is active, in particular, in marine settings where ice interacts with the

surrounding ocean. Marine ice sheets gain mass through accumulation throughout their interiors

and lose mass through flux of ice across the grounding line into floating ice shelves. The grounding

line is the location where the ice is just thin enough to float, dividing the grounded ice sheet from

the floating ice shelves. The ice loss across the grounding line is very sensitive to the thickness of

ice there, which is in turn proportional to the depth of water; a small increase in sea level at the

grounding line leads to a large increase in ice loss [Schoof, 2007a].
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Marine ice sheets are widely thought to be potentially unstable and prone to runaway re-

treat when resting upon reversed bed slopes that slope down towards the interior of the ice

sheet[Weertman, 1974; Thomas and Bentley, 1978; Schoof, 2007a; Katz and Worster, 2010]. This

hypothesis is based on the idea that when the grounding line retreats into deeper water, the ice

loss at the grounding line increases, leading to further retreat. Past analyses of this instability

mechanism have not accounted for the deformational and gravitational e↵ects described in Chapter

2 that lead to a large sea-level fall (rise) at the margin of a rapidly shrinking (growing) ice sheet.

This sea-level fall can act to compensate for some of the deepening of the bed. In Chapter 4, we

present work published in Gomez et al. [2010a] in which instantaneous sea-level changes associated

with a perturbation in the ice distribution are incorporated into a canonical model of equilibrium

ice-sheet stability [Weertman, 1974]. The results demonstrate the potential stabilizing influence of

gravitationally self-consistent sea-level changes on marine ice-sheet grounding lines.

To evaluate the impact of sea-level changes on the timescale of retreat of marine ice sheets, we

must introduce the dimension of time into the analysis. Gomez et al. [2012] accomplish this by

coupling a global sea-level model to a dynamic ice-sheet model. In particular, they employ a one-

dimensional flow line ice-sheet model [Pollard and DeConto, 2009, 2012b] with simplified bedrock

geometry to highlight the physics of the time-dependent coupling. Whereas the sea-level model

in Chapter 4 only incorporated elastic deformation of the solid Earth, Gomez et al. [2012] employ

the version of the sea-level theory described in Chapter 2 that includes viscoelastic deformation in

order to capture the evolution of the system over longer timescales. As described in Chapter 5,

results from the coupled model demonstrate that the sea-level fall associated with a retreating ice

sheet acts to slow down and, in some cases, halt ice-sheet retreat down a reversed bed slope.

Finally, in Chapter 6, we extend the work in Gomez et al. [2010a, 2012] by coupling a realistic

3-D ice sheet-shelf model to a gravitationally self-consistent model of post-glacial sea-level change
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[Gomez et al., 2013]. We apply the coupled model to simulate the evolution of the AIS through

the last 40,000 years, focussing on the deglaciation phase of the ice sheet. Model results confirm

the conclusions of Chapters 4 and 5 in a more realistic setting. That is, the feedback of sea-

level changes onto ice-sheet dynamics acts to slow down grounding line migration and alter the

extent of retreat and advance of the ice sheet relative to simulations in which the full coupling

is not incorporated. Predicted sea-level changes associated with the realistic, 3-D ice-sheet model

highlight the complex gravitational, deformational, and rotational e↵ects that contribute to post-

glacial sea-level change. The model results are shown to compare well to relative sea-level histories

and GPS-derived present-day uplift rates around Antarctica.
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Chapter 2

Static Sea-Level Changes: Theory and Modeling

In this Chapter, we present gravitationally self-consistent predictions of sea-level change following

past and future retreat of sectors of the Antarctic Ice Sheet (AIS). Our predictions are based on a

state-of-the-art pseudo-spectral sea-level algorithm that incorporates deformational, gravitational

and rotational e↵ects on sea level, as well as the migration of shorelines due to both local sea-level

variations and changes in the extent of marine-based ice cover. We focus first on the future sea-

level changes that would occur following the rapid disappearance of either the West Antarctic Ice

Sheet (WAIS) or marine sectors of the East Antarctic Ice Sheet (EAIS). If we define the e↵ective

eustatic value (EEV) as the geographically uniform rise in sea level once all exposed marine-based

sectors have been filled with water, then we find that some locations can experience a sea-level

rise that is ⇠ 40% higher than the EEV. This enhancement is due to the migration of water away

from the zone of melting in response to the loss of gravitational attraction toward the ice sheet

(load self-attraction), the expulsion of water from marine areas as these regions rebound due to the

unloading, and the feedback into sea level of a contemporaneous perturbation in Earth rotation.

In the WAIS case, this peak enhancement is twice the value predicted in a previous projection that

did not include expulsion of water from exposed marine-sectors of the West Antarctic or rotational

Portions of this chapter were published in a paper titled “A New Projection of Sea-Level Change in Response to
a Collapse of the Antarctic Ice Sheet” with Jerry X. Mitrovica, Mark E. Tamisiea and Peter U. Clark in Geophysical
Journal International, vol. 180, 623-634, 2010.

6



feedback. The peak enhancements occur over the coasts of the U.S. and in the Indian Ocean in the

WAIS melt scenario, and over the south Atlantic and northwest Pacific in the EAIS scenario. We

conclude that accurate projections of the sea-level hazard associated with ongoing global warming

should be based on a theory that includes the complete suite of physical processes described above.

In later chapters of this thesis (3, 5 and 6), we focus on AIS evolution over longer timescales

and in this case, the dominant physical e↵ects contributing to sea-level changes di↵er from those

that govern rapid changes (<500 year) in ice distribution. Therefore, the material in this chapter

is augmented, relative to Gomez et al. [2010b], to include a discussion of ice-age sea-level physics

using, as an illustrative example, predictions of post-glacial sea level following past AIS retreat.

2.1 Introduction to Future Sea-Level Predictions

As the Earth moves into a period of continued and potentially increased global-scale warming,

questions regarding the stability of present-day ice reservoirs, including the polar ice caps and

mountain glaciers, have become more pressing. The Antarctic Ice Sheet (AIS) is a central focus of

this interest, particularly because a large fraction rests on bedrock below sea level (Figure 2.1). In

this regard, most discussions of future instability are preoccupied with the possible collapse of the

West Antarctic Ice Sheet (WAIS), which is separated from the East Antarctic Ice Sheet (EAIS)

by the Transantarctic Mountains and the Ronne-Flichner Ice Shelf, and which is almost entirely

characterized by a marine-based setting. However, large sectors of the EAIS, particularly in Wilkes

Land (⇠ 120� 150� E) and in the vicinity of the Amery Ice Shelf and Lambert Glacier (⇠ 70� E),

have a base that also lies well below local sea level (Figure 2.1) and the impact on sea level of their

destabilization has not been previously addressed.

What would the change in sea level be as a consequence to the collapse of these marine-based

sectors of the AIS? The answer to this question has not yet been fully explored, and values that are
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Figure 2.1: Map showing bedrock topography over the Antarctic and vicinity. Color contours are
only shown over locations where this topography is less than zero in order to highlight the extent
of marine-based settings. The black line shows the edge of the grounded ice sheet.
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quoted within the literature - both mainstream and scientific - can vary widely depending on the

level of scientific sophistication used to generate the estimate. For example, if one were to convert

the grounded portion of the volume cited above into a volume of water, and then distribute this

volume in a geographically uniform manner throughout the global oceans, then one would arrive at

the so-called eustatic estimate of ⇠ 70 m. If, however, one were to take into account the negative

topography of the bedrock, which would serve as accommodation space for meltwater, then the

geographically uniform increase in sea level, which we will term the e↵ective eustatic value (EEV),

would be closer to 55 � 60 m. In regard to the WAIS, the analogous eustatic and EEV are ⇠ 8

and ⇠ 5 m, respectively. The latter is a widely cited estimate [Mercer, 1978], and it is quoted, for

example, in Chapter 10 of the penultimate assessment of the IPCC [Solomon et al., 2007].

However, it has been known for well over a century [Woodward, 1888] that a rapidly melting ice

sheet will produce a markedly non-uniform change in sea level. This spatial variability is largely

driven by the self-attraction of the surface mass (ice plus ocean) load. Specifically, an ice sheet

exerts a gravitational (tidal) attraction on the surrounding ocean, which leads to a build-up of

water close to the ice mass. As the ice sheet melts, the integrated mass of the oceans will certainly

increase; however, the tidal attraction will decrease, leading to a migration away from the zone of

melting. Woodward [1888] showed, using a simple rigid (i.e., non-deforming) Earth model, that the

migration process will dominate within a region 2000 km from the ice sheet. In this “near-field”

zone, sea level will fall in response to the melting event, while it will rise by progressively larger

values at greater distance. The predicted migration of water is accentuated in more recent studies,

which include elastic deformation of the solid surface, since the near-field of the ice sheet will also

be subject to crustal uplift which adds to the local sea-level fall [Farrell and Clark, 1976; Clark

and Primus, 1987; Nakiboglu and Lambeck, 1991; Conrad and Hager, 1997; Mitrovica et al., 2001;

Tamisiea et al., 2001]
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Since load self-attraction contributes significantly to the geographic variability, changes in the

mass balance of a specific ice reservoir will produce a distinct pattern of sea-level change. Hence

these patterns have come to be known as sea-level “fingerprints” [Plag and Juettner, 2001]. Mitro-

vica et al. [2001] showed that the geographic variation in secular trends evident in a widely dis-

tributed subset of 20th century tide gauge records can be explained by a weighted sum of fingerprints

from melting of polar ice sheets and mountain glaciers. Their analysis, which demonstrated that

such records could be used to constrain not only the amplitude of recent sea-level rise but also

the relative contributions from various sources, has motivated renewed interest in the physics of

sea-level change following rapid melting events. This interest has been further broadened by e↵orts

to infer the source of sea-level changes that have accompanied late Quaternary, ice-age climate

events [Clark et al., 2002; Kendall et al., 2008].

Many of these recent studies have calculated sea-level fingerprints associated with melting from

the AIS or a sub-region, including the WAIS [Mitrovica et al., 2001; Tamisiea et al., 2001; Clark

et al., 2002]. However, to our knowledge, the first fingerprint of this kind was computed by Clark

and Lingle [1977] who considered the impact of a future, uniform thinning of the WAIS on sea

level. We reproduce their result in Figure 2.2. The contours, as in the original publication, are

normalized by the eustatic sea-level change associated with the melting event.

As discussed above, melting from the WAIS leads to a sea-level fall in the vicinity of this region,

and an increase in the computed sea-level rise as one moves toward the north. The mean sea-level

change is, of course, equal to 1, or the eustatic value. The maximum sea-level rise is 20% higher than

the eustatic value in the north Atlantic and Indian Ocean and 26% higher in the north Pacific.

The pattern of sea-level rise tends to taper toward the continental shelves, so that coastal sites

experience a rise ⇠10% higher than the eustatic value. The broad scale pattern of water migration

away from the WAIS is largely due, as we have discussed, to load self-attraction, while the tapering
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Figure 2.2: Sea-level change, normalized by the eustatic equivalent sea-level rise, in response to a
uniform thinning of the West Antarctic ice sheet; the figure is reproduced, with minor modification,
from Clark and Lingle [1977]. As described in the text, Clark and Lingle [1977] applied a standard
sea-level theory valid for a non-rotating Earth in which all shorelines remain fixed with time. Thus,
the prediction does not include inundation into the West Antarctic or perturbations in sea level
associated with changes in the Earth’s rotation vector.
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pattern over the northern oceans is due to loading e↵ects. Specifically, the ocean load will tend to

(elastically) deform the crust of the elastic Earth model downwards in the middle of the ocean and

upwards over the (unloaded) continental regions.

Clark and Lingle [1977] argued that their calculation (Figure 2.2) could be scaled to consider

any uniform melting (or indeed growth) of the WAIS by multiplying the normalized prediction by

the associated eustatic value (positive for melting and negative for growth). Since their calculations

did not include the complete collapse of the WAIS ice sheet, and specifically the inundation of the

marine-based sectors of this ice sheet, one could treat the case of a full collapse by scaling the

results in Figure 2.2 by the e↵ective eustatic value cited above (⇠ 5 m).

It is unclear why the Clark and Lingle [1977] paper has been largely ignored in the subsequent

discussions of projected sea-level changes associated with a collapse of the WAIS, but this neglect

was immediate [Mercer, 1978] and sustained [e.g., Solomon et al., 2007]. In any event, the results

in Figure 2.2, and more recent studies by Mitrovica et al. [2001] and Clark et al. [2002], indicate

that future sea-level changes in response to loss of marine-based ice from Antarctica will neither

be the eustatic nor the e↵ective eustatic value, but rather a highly variable geographic signal that

includes areas of sea-level fall as well as zones of accentuated (relative to the e↵ective eustatic value)

sea-level rise.

The Clark and Lingle [1977] analysis is not the final word on the issue, however, because it was

based on a sea-level theory [Farrell and Clark, 1976] that makes two significant assumptions. First,

the results in Figure 2.2 do not include the feedback on sea level of contemporaneous perturbations

in the Earth’s rotation vector, a process that was included in more recent analyses of sea-level

fingerprints due to ongoing or late Quaternary melting events over the Antarctic [Mitrovica et al.,

2001; Clark et al., 2002]. Second, the calculation assumes that there is no marine-based ice, i.e.,

that the melting of the WAIS does not lead to inundation of parts of this sector. One might
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partially overcome this limitation by using the e↵ective eustatic value, rather than the eustatic

value, to scale the results in Figure 2.2; however this ad-hoc correction misses an important piece

of physics. In particular, the melting of the WAIS would also produce a rebound of the underlying

crust, and this rebound will act to push water out of the region and into the global oceans. That

is, the topographic hole that exists today below the WAIS is not the same as the hole that would

exist after the immediate elastic rebound and subsequent viscous uplift following ice sheet retreat.

The sea-level theory adopted by Clark and Lingle [1977] was a special (elastic) case of a theory

that was developed to model sea-level changes associated with the Late Pleistocene ice-age cycles

[Farrell and Clark, 1976]. However, over the last decade this “standard” theory has been extended

to include rotational feedback [e.g., Milne and Mitrovica, 1996, 1998; Peltier, 1998; Mitrovica et al.,

2005] and shoreline migration due to local changes in sea level at coastlines and/or the growth

or ablation of grounded marine-based ice [e.g., Johnston, 1993; Milne, 1998; Milne et al., 1999;

Mitrovica and Milne, 2003; Mitrovica, 2003; Kendall et al., 2005]. In this paper we update and

extend the Clark and Lingle [1977] results by adapting recent advances in ice-age sea-level physics

to compute and interpret fingerprints associated with melting from both the WAIS and marine-

based sectors of the EAIS. Our goal here is to provide a far more comprehensive and state-of-the-art

answer to the question posed near the beginning of this Chapter - namely, what is the projected

sea-level change that would occur after the collapse of (parts of) the AIS?

In the next section we review, in largely symbolic notation, the theory and algorithm we apply to

generate our sea-level predictions. The theory is a summary of a derivation that may be found in the

recent literature of ice-age sea level [Mitrovica and Milne, 2003; Kendall et al., 2005], but we do not

include it merely for completeness. Rather, as we discuss in formulating our numerical algorithm,

the implementation of the theory necessary to predict future sea-level changes is fundamentally

di↵erent from the implementation one would use to calculate ice-age sea-level variations. The
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di↵erence arises because the initial (i.e., before loading) topography is known in the former case,

but it is unknown in the latter application.

2.2 A Theory for Forward Predictions of Sea-Level Change

Mitrovica and Milne [2003] and Kendall et al. [2005] derived a generalized sea-level theory for

application to problems in glacial isostatic adjustment (GIA). Furthermore, they outlined a suite of

numerical algorithms tailored to the ice-age problem; in particular, these algorithms were designed

for a system that evolves from the onset of ice-age loading, at some time in the past, up to the

present day. In this section we briefly review this generalized theory, and we derive a revised

numerical algorithm suitable for calculations that yield projections of future sea-level change.

We begin by denoting the radial position of the sea surface and solid surface, where the latter

does not include ice height, as G and R, respectively. The former symbol is commonly adopted with

the GIA literature because the position of the sea surface has been taken to be identical, within

the static sea-level theory, to the position of the gravitational equipotential referred to as the geoid

[This correction has, however, been shown to be imprecise; Tamisiea, 2011]. The fields G and R

may be defined globally, and their di↵erence yields sea level:

SL(✓, , t
j

) = G(✓, , t
j

) �R(✓, , t
j

). (2.1)

where ✓ and  denote the colatitude and east-longitude, and t
j

is the time. With this definition, a

simple relationship holds between topography (minus ice height) and sea level:

T (✓, , t
j

) = �SL(✓, , t
j

). (2.2)

Our definition of topography and the radial position of the solid surface can easily be altered
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to include the ice height. However, we have chosen to proceed in the above manner in order

to be consistent with the previous literature. Moreover, this definition simplifies the connection

between topography and various concepts related to sea level. For example, locations with positive

topography (negative sea level) are synonymous with “land”, while marine settings are defined

by negative topography (or positive sea level). In reference to the latter case, any site free of

grounded ice is considered to be “ocean”, while other locations are said to be covered by grounded,

marine-based ice. In the absence of ice cover, a shoreline is defined wherever T = SL = 0.

With this nomenclature in mind, the ocean height may be computed by projecting global sea

level defined in equation (2.1) onto the region covered by ocean. This projection can be written as

S(✓, , t
j

) = SL(✓, , t
j

) · C⇤(✓, , t
j

), (2.3)

where the ocean function, C⇤, is defined by

C⇤(✓, , t
j

) =

8
>>>><

>>>>:

1 if SL(✓, , t
j

) > 0 and there is no grounded ice

0 elsewhere,

(2.4)

The connection between the height of the sea-surface equipotential, G, the radial position of the

solid surface, R, and sea level SL, as well as the projection defined by equation (2.3), is illustrated

in top frame of Figure 2.3. Wherever the height of the sea-surface equipotential (with location

given by the top of the water in open ocean regions and by the dashed line elsewhere) lies above

the solid surface (the top of the region in brown), irregardless of the presence or absence of ice, the

topography is negative (or sea level is positive). Where the height of the sea-surface equipotential

lies below the solid surface the topography is positive (sea level is negative). Moreover, the ocean

function, C⇤, is 1 wherever the topography is negative �and there is no grounded ice; this is true
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over the ocean pictured in the figure, including regions of the ocean that are covered by floating ice.

It is important to emphasize that areas in which the ocean function is equal to 1 are, by definition,

filled with water from the solid surface up to the sea surface (or covered by an equivalent mass

comprised of a combination of water and floating ice).

Changes in the distribution of ice and water, whether in the past or into the future, act to perturb

the radial position of the bounding surfaces that define sea level. If we denote these perturbations

by �G and �R, respectively, and the time just prior to the onset of load redistribution by t = t0,

then we can express G and R at a later time t
j

as:

G(✓, , t
j

) = G(✓, , t0) + �G(✓, , t
j

),

R(✓, , t
j

) = R(✓, , t0) + �R(✓, , t
j

).

(2.5)

Using these expressions in equation (2.1) yields an analogous decomposition for global sea level

SL(✓, , t
j

) = SL(✓, , t0) + �SL(✓, , t
j

), (2.6)

where

�SL(✓, , t
j

) = �G(✓, , t
j

) � �R(✓, , t
j

). (2.7)

One can write a similar expression for topography. Using (2.2) in (2.6) yields

T (✓, , t
j

) = T (✓, , t0) � �SL(✓, , t
j

). (2.8)

The sea-surface height anomaly, G, is generally separated into spatially varying and spatially

uniform components,

�G(✓, , t
j

) = �G(✓, , t
j

) +
��(t

j

)

g
, (2.9)
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Figure 2.3: (A) Schematic illustrating the connection between sea level (or topography) and ocean
height, following equation (2.3). The position of the sea surface equipotential, G, is given by the
top of the open ocean and the dashed line in regions covered by ice or land. The height of the
“solid surface”, R, as we define it in the text, is given by the top of the region coloured in brown.
Topography is positive (or sea level is negative) where G < R and it is negative (sea level is positive)
where G > R. Following equation (2.4), the ocean function, C⇤ is 1 where sea level is positive and
there is no grounded marine-based ice, and it is zero elsewhere. (B) As in frame (A), except for
the situation after all ice (floating and grounded) has melted. The thin dotted line at left on the
figure shows the location of the original sea surface (i.e., the sea surface in frame A). At the base
of the figure we indicate regions where � ⌘ T (t0)[C⇤(t

j

) � C⇤(t0)] is zero or non-zero, where t0
refers to the situation in frame (A) and t

j

is the situation in frame (B). As discussed in the text,
�, which is the second term on the right-hand-side of the generalized sea-level equation (2.13), is
non-zero wherever ocean exists at t

j

and not t0, or vica-versa. All symbols on the figure suppress
the dependence on (✓, , t).
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where the uniform shift, ��(t
j

)
g

, will be constrained by invoking conservation of mass of the surface

load (see below). The decomposition (2.9) has a straightforward physical interpretation. The sea

surface is constrained, in a static sea-level theory, to remain an equipotential surface, However, as

mass is transferred between ice and ocean reservoirs, and/or the Earth deforms in response to this

changing load, the sea surface need not remain on the same equipotential surface through time

[Dahlen, 1976]. The first term on the right-hand-side of equation (2.9) represents the perturbation

in the original equipotential surface (i.e., the equipotential surface coincident with sea level at t0)

and the second term is the uniform shift that is associated with a change from one equipotential

surface to another.

With this decomposition of the height of the sea-surface equipotential, we may also define

�SL(✓, , t
j

) = �G(✓, , t
j

) � �R(✓, , t
j

), (2.10)

and equation (2.7) can then be rewritten as

�SL(✓, , t
j

) = �SL(✓, , t
j

) +
��(t

j

)

g
. (2.11)

Next, we turn to the ocean height. Deriving an expression for the change in ocean height relative

to the initial (t = t0) height is more complicated than the above derivations because determining

this height requires, following equation (2.3), a projection onto the ocean function. If we write, in

analogy with equation (2.5)

S(✓, , t
j

) = S(✓, , t0) + �S(✓, , t
j

), (2.12)

then, equations (2.2), (2.3) and (2.6) yield, after some algebra, the generalized sea-level equation
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(GSLE) derived by Mitrovica and Milne [2003]:

�S(✓, , t
j

) =�SL(✓, , t
j

)C⇤(✓, , t
j

)

� T (✓, , t0) [C⇤(✓, , t
j

) � C⇤(✓, , t0)] .

(2.13)

The GSLE equation (2.13) indicates that the change in ocean height from the onset of loading

is comprised of two terms. The first term on the right-hand-side is a simple projection of the total

change in global sea level projected onto the ocean function at t = t
j

(i.e., from equation (2.3), a

projection of global sea level onto all marine areas free of grounded ice at t = t
j

). The second is a

term which takes into account changes in geometry of oceans from t = t0 to t = t
j

. Specifically, this

“correction” term [see Mitrovica and Milne, 2003] involves a projection of the initial topography

onto a field which is non-zero only in locations in which the ocean geometry has changed during

this time interval.

To illustrate these concepts, Figure 2.3 shows a rather general case in which an area that

includes both floating and grounded marine based ice, as well as land ice (frame A), becomes ice

free (frame B). We discussed Figure 2.3A above. In Figure 2.3B all areas with negative topography

(positive sea level) are oceans (i.e., C⇤ = 1). If we take t = t0 in the frame A and t = t
j

in the

frame B, then at the bottom of the plot we indicate locations where the second correction term on

the right-hand-side of GSLE equation (2.13) is either zero or non-zero. Specifically, this term is

non-zero in all regions where the ocean function has changed across the time interval; that is, all

locations that accommodate water at t = t
j

but not at t = t0. Thus, this correction term tracks

changes in shoreline geometry which can arise from local changes in sea level leading to onlap (e.g.,

the coast on the far left of the plot) or o✏ap, or through a combination of these local changes and

the disappearance of grounded, marine-based ice (e.g., near the right coast of the ocean at left, and

within the marine depression at right.)

19



Local changes in sea level (i.e., changes in the relative position of the sea surface equipotential

and solid surface) are governed by the first term on the right-hand-side of equation (2.13). This

term incorporates the gravitational, deformational and rotational changes in sea level driven by

the change in the surface mass (ice plus ocean) load. Indeed, it is this term that controls the

basic physics of post-glacial sea-level change that we discussed in the Introduction. For example,

the movement of water away from the location of a melting ice sheet in response to a loss in

gravitational attraction between the ice and water, evident in the fingerprint prediction of Clark

and Lingle [1977] (Figure 2.2), and also in the change in tilt of the sea surface from Figure 2.3A to

B, would be included in the so-called self-attraction term that would form part of any mathematical

expression for �SL(✓, , t
j

). Similarly, we pointed out in the Introduction that standard sea-level

theories [Farrell and Clark, 1976; Clark and Lingle, 1977] do not incorporate the inundation of

water in regions vacated by the retreat of grounded, marine-based ice, and the expulsion of some

of this water as the inundated region viscoelastically rebounds. In the generalized sea-level theory,

this inundation is included via the second term on the right-hand-side of equation (2.13), which

“activates” this region as a reservoir for water (note the � 6= 0 value for the marine depression

to the right of Figure 2.3B). However, the physics of water expulsion is captured by the sea-level

change (or perturbations in the positions of the sea and solid surface) over the inundated region

that would be incorporated into any detailed expression for �SL(✓, , t
j

) on the right-hand-side of

equation (2.13).

We must emphasize, however, that the two terms on the right-hand-side of the GLSE (2.13)

are not independent of each other: Changes in global sea level, �SL(✓, , t
j

), map into changes in

the ocean function C⇤(✓, , t
j

) via equation (2.4).

It will be useful to rewrite equation (2.13) in a slightly modified form. In particular, rather

than considering the total change in sea level (or ocean height) from the onset of loading, we can
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instead consider a change across two successive time steps in the evolution, say from t = t
j�1 to

t = t
j

. In particular, if the change in ocean height across this shorter time interval is given by

�S(✓, , t
j

) = S(✓, , t
j

) � S(✓, , t
j�1) = �S(✓, , t

j

) � �S(✓, , t
j�1), (2.14)

then equation (2.13) can be rewritten as

�S(✓, , t
j

) = � �S(✓, , t
j�1) + �SL(✓, , t

j

)C⇤(✓, , t
j

)

� T (✓, , t0) [C⇤(✓, , t
j

) � C⇤(✓, , t0)] .

(2.15)

Moreover, using the decomposition (2.11) yields

�S(✓, , t
j

) = � �S(✓, , t
j�1) + �SL(✓, , t

j

)C⇤(✓, , t
j

) +
��(t

j

)

g
C⇤(✓, , t

j

)

� T (✓, , t0) [C⇤(✓, , t
j

) � C⇤(✓, , t0)] .

(2.16)

This version of the GSLE is in a form amenable to numerical solution, as we describe in the following

section.

2.2.1 A Numerical Implementation

For the purpose of brevity it will be useful to rewrite equation (2.16) using a notation in which the

dependence on the colatitude and east longitude is implicit and the time dependence is indicated

by a subscript:

�S
j

= ��S
j�1 + �SL

j

C⇤
j

+
��

j

g
C⇤
j

� T0
⇥
C⇤
j

� C⇤
0

⇤
. (2.17)

where we note that only the term ��
j

g

is independent of (✓, ).

Our GSLE holds for any kind of Earth model and may be applied as long as a formalism exists

for computing the change in global sea level �SL given some surface mass (ice plus ocean) loading
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history. For example, Kendall et al. [2005] described a complete spectral theory, ultimately based

on viscoelastic Love number theory [Peltier, 1974], for the case of a rotating, self-gravitating Earth

model with depth-varying (i.e., 1-D) linear viscoelastic structure. The results described throughout

this thesis are based on an implementation of the Kendall et al. [2005] expressions for �SL, though

we adopt a new theory for computing load-induced perturbations in Earth rotation [Mitrovica

et al., 2005]. We summarize the main elements of the theory we use for computing �SL in section

2.2.2. We emphasize, however, that the same equation (2.17) also holds for 3-D Earth models of

arbitrary complexity, and in this case expressions for �SL may be generated, for example, using

a suite of numerical algorithms that have been designed to treat the 3-D loading of a viscoelastic

Earth [Martinec, 2000; Wu and van der Wal, 2003; Zhong et al., 2003; Latychev et al., 2005].

In the viscoelastic calculation, the perturbation �SL is dependent on the complete time history

of the surface load and rotation vector. We make this dependence explicit by re-writing equation

(2.17) in the form

�S
j

= ��S
j�1 + �SL

j

✓
�I

m

0mj

; �S
m

0m<j�1
; �S

j

; �!
m

0m<j�1
; �!

j

◆
C⇤
j

+
��

j

g
C⇤
j

� T0
⇥
C⇤
j

� C⇤
0

⇤
,

(2.18)

In this expression the history of the surface mass load has been decomposed into increments across

two successive time steps of ocean height, �S
m

, and ice height, �I
m

, which are both functions of

(✓, ), and an analogous set of increments for perturbations in the rotation vector, �!
m

. For reasons

that will become clear below, the ocean height and rotation vector increments have been separated

into the increment at t
j

and all prior increments.

The form of equation (2.18) makes clear that the GSLE is an integral equation. That is, the

ocean height increment being solved for, �S
j

, also appears on the right-hand-side of the equation

in the expression for �SL
j

. This form reflects the fact that changes in the ocean height are
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governed by the gravitational field of the planet, and that this field is in turn perturbed by ocean

height changes. The perturbation arises because of both the direct attraction of the load and the

deformation it induces. Other terms on the right-hand-side of equation (2.18) also depend on the

�S
j

, albeit implicitly: C⇤
j

(via equation 2.4), ��
j

g

(see below), and �!
j

(since the perturbation in

the rotation vector will depend on all load increments).

As mentioned above, an expression for ��
j

g

may be obtained by invoking conservation of mass

of the surface load. Specifically, multiplying both sides of equation (2.18) by the density of water,

⇢
w

, integrating over the surface of the Earth (⌦), and rearranging yields:

��
j

g
= � 1

A
j

⇢i
⇢w

x

⌦

�I
j

d⌦

� 1

A
j

x

⌦

�SL
j

✓
�I

m

0mj

; �S
m

0m<j�1
; �S

j

�!
m

0m<j�1
; �!

j

◆
C⇤
j

d⌦

+
1

A
j

x

⌦

T0
⇥
C⇤
j

� C⇤
0

⇤
d⌦,

(2.19)

where ⇢i is the density of ice, �I
j

is the total change in the ice load height from time t0 to t
j

(i.e.,

the sum of increments �I
m

, from m = 1, j), and

A
j

=
x

⌦

C⇤
j

d⌦. (2.20)

is the area of oceans that is free of grounded ice at t
j

.

The system of equations (2.18-2.20) may be solved at each time step t
j

using an iterative scheme.

Specifically, if we use i to denote the iteration counter, then our numerical algorithm is based on
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the following:

�Si

j

= � �S
j�1 + �SLi�1

j

✓
�I

m

0mj

; �S
m

0m<j

; �Si�1
j

; �!
m

0m<j

; �!i�1
j

◆
C⇤,i�1
j

+
��i�1

j

g
C⇤,i�1
j

� T0

h
C⇤,i�1
j

� C⇤
0

i
,

(2.21)

��i�1
j

g
= � 1

Ai�1
j

⇢i
⇢w

x

⌦

�I
j

d⌦

� 1

Ai�1
j

x

⌦

�SLi�1
j

✓
�I

m

0mj

; �S
m

0m<j

; �Si�1
j

; �!
m

0m<j

; �!i�1
j

◆
C⇤,i�1
j

d⌦

+
1

Ai�1
j

x

⌦

T0

h
C⇤,i�1
j

� C0

i
d⌦,

(2.22)

and

Ai�1
j

=
x

⌦

C⇤,i�1
j

d⌦. (2.23)

In these equations, the value of the total ocean height change at the previous time step t = t
j�1,

�S
j�1, is assumed to be known (i.e., solved for). An initial guess for the ocean height increment

�S0
j

(see below) can then be used, in combination with all ice load increments �I
m

(m = 1, j) and

ocean height and rotation increments before t
j

, i.e., �S
m

and �!
m

for m = 1, j � 1, to compute all

elements required for the right-hand-side of equation (2.21): �!0
j

, �SL0
j

, C0
j

, A0
j

, and ��0
j

(in that

order). Then, using equation (2.21), the next estimate for �S1
j

may be obtained, and the process

is repeated until convergence.

As a starting guess for �S0
j

we use the geographically uniform (eustatic) meltwater distribution

associated with the ice increment �I
j

(i.e., �S
j

= ��V I

j

⇢
i

/(⇢
w

Ao

j

), where �V I

j

is the change in the

volume of ice across the jth time step).

The iteration scheme (2.21-2.23) di↵ers significantly from the methodology used in the cal-

culation of ice-age sea-level changes [Kendall et al., 2005]. In our present application, where we
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are concerned with projections of future sea-level change, the initial topography T0 is simply the

present-day topography and it is therefore known. In contrast, in the ice-age problem the initial

topography is the topography at the start of the ice-age loading and this is unknown at the onset

of the calculation; only the present-day (observed) topography is known. Therefore, in ice-age

applications a second “outer” iteration “k” loop is applied over the full loading history such that a

first guess to the initial topography, T k=0
0 , is successively refined until the time-stepped numerical

scheme yields a present-day topography that has converged to the actual, observed topography

[Peltier, 1994; Milne et al., 1999; Kendall et al., 2005].

In the calculations below, we will compare our results to predictions based on the standard sea-

level equation derived by Farrell and Clark [1976] and adopted by Clark and Lingle [1977]. Their

derivation assumed that there are no marine-based ice components, that all shorelines remain

fixed in time, and that there is no feedback associated with perturbations in Earth rotation. It also

assumes a non-rotating Earth. In this case, the algorithm outlined above simplifies to the following:

�Si

j

= ��S
j�1 + �SLi�1

j

✓
�I

m

0mj

; �S
m

0m<j

; �Si�1
j

◆
C +

��i�1
j

g
C, (2.24)

��i�1
j

g
= � 1

A
⇢i
⇢w

x

⌦

�I
j

d⌦ � 1

A

x

⌦

�SLi�1
j

✓
�I

m

0mj

; �S
m

0m<j

; �Si�1
j

◆
Cd⌦, (2.25)

where C is equal to 1 over the present-day ocean and zero elsewhere, and A is the area of that

ocean:

A =
x

⌦

Cd⌦. (2.26)

2.2.2 Love Number Theory for Computing �SL

To compute the spatially variable component of global sea-level change, �SL, we adopt a spherically

symmetric, self-gravitating Maxwell viscoelastic Earth model and employ viscoelastic Love number
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theory [Peltier, 1974] to compute the response of the solid Earth and sea surface equipotential to a

change in mass loading. The theory outlined here is valid for spherically symmetric, viscoelastically

deforming Earth models. First, following Kendall et al. [2005], we present the case of a non-rotating

Earth model, and then derive and add the additional terms necessary to account for the signal

associated with perturbations in Earth rotation (Section 2.2.3).

The total change in surface loading is comprised of changes in the distributions of ice (�I) and

water (�S) and is given by,

�L(✓, , t
j

) = ⇢
w

�S(✓, , t
j

) + ⇢
i

�I(✓, , t
j

). (2.27)

We can model this load history as a series of Heaviside load increments as follows,

�L(✓, , t
j

) =
NX

n=0

[⇢
i

�I
n

(✓, ) + ⇢
w

�S
n

(✓, )]H(t� t
n

) (2.28)

where

H(t� t
n

) =

8
>>>><

>>>>:

0 if t < t
n

1 if t � t
n

.

(2.29)

The geographically variable component of the change in sea level in response to this load change

may be expressed as a space-time convolution of the load with the viscoelastic Green’s functions

for the gravitational potential perturbation (�) and the radial displacement (�):

�SL(✓, , t
j

) =

Z
t

j

�1

ZZ

⌦
�L(✓0, 0, t0

j

)


�(�, t

j

� t0)

g
� �(�, t

j

� t0)

�
d⌦0dt0. (2.30)

The Green’s functions in equation 2.30 may be written in terms of non-dimensional surface load

Love numbers. The Love numbers h and k describe the impulse response of the Earth to loading
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at spherical harmonic degree l. They take the form,
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where, in each equation, the first term gives the instantaneous elastic response of the Earth, and

the second term gives the non-elastic response as a sum of K modes of exponential decay. These

modes arise, for example, from the deformation of density discontinuity layers within the Earth.

Thus when a load is applied, there will be an instantaneous elastic response, followed by non-elastic

deformation that tends exponentially towards a final equilibrium state.

The Love number h
l

(t) are coe�cients in a Legendre polynomial expansion of the Green’s

function for the radial displacement of the solid surface:
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where a and M
e

are the radius and mass of the Earth, respectively, and

cos � = cos ✓ cos ✓0 + sin ✓ sin ✓0 cos( �  0). (2.34)

The k
l

(t) are coe�cients in a Legendre polynomial expansion of the Green Function for the gravi-

tational potential perturbation:
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where the �(t) represents the potential perturbation due to the direct gravitational e↵ect of the
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impulse load. Substituting equations 2.33 and 2.35 into equation 2.30 and rearranging yields
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Using the time dependence give by equation 2.28 allows the time convolution to be performed

analytically, and this gives
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where the Love numbers are embedded within the parameters
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We employ a spherical harmonic (spectral) approach to derive analytic expressions for the

spatial convolutions. Any scalar field �(✓, ) defined on the surface of a sphere as a spherical

harmonic expansion may be expressed as follows,
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where l and m are the spherical harmonic degree and order, respectively, and the Y
lm

(✓, ) are
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spherical harmonic basis functions that satisfy the normalization,
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Using the addition theorem of spherical harmonics, we can also write,
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Expressing each of the scalar fields in equation 2.37 in terms of a spherical harmonic decomposition

and using equation 2.42 yields
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where we define

T
l

⌘ 4⇡a3
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e

(2l + 1)
. (2.44)

2.2.3 Rotational Component of �SL

On a rotating Earth, perturbations in the Earth’s rotation vector induced by changes in surface

mass (ice plus ocean) loading will perturb sea-level [Milne and Mitrovica, 1996, 1998; Mitrovica

et al., 2005]. A normal mode theory for computing changes in the magnitude and orientation of

the rotation vector following a change in surface mass loading, valid for a spherically symmetric

viscoelastic Earth model, may be found in Mitrovica et al. [2005] and will not be covered here.

However, following Kendall et al. [2005], we summarize the theory needed to include the e↵ect of

Earth rotation changes on sea level.
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Changes in the Earth’s rotation vector following the onset of surface load changes alter the

inertia tensor of the system, which gives rise to an evolving centrifugal potential perturbation

referred to as a ”driving potential” [Milne and Mitrovica, 1998]. The driving potential, ⇤(✓, , t
j

),

is described completely by degree 0 and 2 spherical harmonics, taking the form
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�⇤2,m(t
j
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For small perturbations to the rotation vector caused by the ice distribution changes considered

here, the driving potential is dominated by a degree two and order one “quadrential” geometry (as

discussed in detail below).

The method for computing the response of sea level to the driving potential is analogous to the

method used in section 2.2.2 for surface load changes. We can model the driving potential as a

series of Heaviside increments (as in the expression for the surface loading given by equation 2.28)

as follows
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The viscoelastic tidal Love numbers (as opposed to surface mass load Love numbers),
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where T refers to the tidal forcing, may be used to describe the response of the Earth to a potential

forcing. A time convolution of the spherical harmonic coe�cients of the driving potential with a

sea level Green’s functions associated with a tidal forcing yields the spherical harmonic coe�cients
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of the sea-level perturbation associated with the driving potential:
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where the Green’s functions �T
l

(t) and �T

l

(t) may be simply expressed in terms of the tidal Love

numbers [Milne and Mitrovica, 1998; Peltier, 2007] as follows,
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The Dirac-delta function in equation 2.50 accounts for the direct e↵ect of the potential forcing.

Finally, combining equations 2.46 - 2.51, the spherical harmonic coe�cients of the sea-level pertur-

bation associated with rotation e↵ects may be written as:
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Adding equation 2.52 into equation 2.43 for the total sea-level change, we arrive at our final ex-
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pression:
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The associated expression for the term ��
j

g

for the uniform shift in the height of the sea-surface

equipotential is given in Kendall et al. [2005].

All calculations in Chapters 2, 3 and 6 (unless otherwise specified) employ the sea-level theory

valid for a rotating Earth model, while Chapters 4 and 5 consider flowline ice sheet simulations in

which ice and water loading changes are symmetric about the Earth’s rotation poles and therefore

rotational e↵ects need not be included.

2.3 Results and Discussion of Sea-Level Changes Following Future Ice-Sheet Col-

lapse

We will consider two di↵erent scenarios for melting from the Antarctic. In the first, we melt

the entire WAIS. The total (grounded) volume of the ice sheet corresponds to an eustatic sea-

level rise of 8.4 m, and an e↵ective eustatic value (henceforth EEV) of 5.0 m. In the second,

we remove ice only from marine-based sectors of the EAIS (see Figure 2.1). This volume, which

is taken largely from Wilkes Land, corresponds to a eustatic sea-level rise of 18.0 m, and an

EEV of 14.2 m. Our ice thickness model for these regions is taken from the EISMINT web site

(http://homepages.vub.ac.be/ phuybrec/eismint/antarctica.html).
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The sea-level algorithm described above will be solved using a so-called pseudo-spectral method-

ology [Kendall et al., 2005]. In particular, �SL
j

is computed in the spectral (i.e, spherical harmonic)

domain, while all projection operations required in the various terms of equations (2.21-2.22) are

performed in the space domain and then converted into the spectral domain. The switching back

and forth between spectral and space domains is motivated by the fact that projections are much

more e�ciently computed in the space domain (where they are simply multiplications between asso-

ciated grid elements) than in the spectral domain. These spectral calculations are all performed up

to spherical harmonic degree and order 512. The present-day topography, T0, is given by ETOPO2

(http://www.ngdc.noaa.gov/mgg/fliers/01mgg04.html) with the ice thickness model removed.

Our predictions will be based on an Earth model with elastic and density structure taken from

the seismic inference PREM [Dziewonski and Anderson, 1981]. We begin with predictions of sea-

level change “soon” after the collapse of the ice sheets. In this case we assume that the time

elapsed from the onset of melting to the observation of the sea-level change is su�ciently small

that no viscous relaxation occurs. As a preliminary investigation of the e↵ect of viscous relaxation

on these “elastic” predictions, we end this section with a set of calculations that predict the change

in sea level 500 years after the melting event has ceased. These calculations, in contrast to the

elastic predictions, will be a function of the adopted radial profile of mantle viscosity, and for

this purpose we use a profile that is amongst a class of inferences that has received wide support

within the ice-age modeling community [e.g., Lambeck et al., 1998; Mitrovica and Forte, 2004]. The

profile is characterized by an elastic lithosphere of thickness 120 km, an upper mantle viscosity of

5 ⇥ 1020 Pa s, and a lower mantle viscosity of 5 ⇥ 1021 Pa s.

In Figure 2.4A and B we show normalized sea-level fingerprints for the collapse of the WAIS

computed using the full sea-level theory (equations 2.21-2.23) and the older theory of Farrell and

Clark [1976] (equations 2.24-2.26), respectively. Figure 2.4C is the di↵erence between these two
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Figure 2.4: (A) Sea-level change in response to the collapse of the WAIS computed using the full
sea-level theory described by equations (2.21-2.23). The total volume of the WAIS is used in the
calculation, but the prediction is normalized by the e↵ective eustatic value. (B) As in frame (A),
except that the calculations adopt an older sea-level theory (see equations 2.24-2.25) which assumes
a non-rotating Earth, no marine-based ice, and shorelines that remain fixed (to the present-day
geometry) with time. In this calculation only an amount of ice with a volume that matches the
e↵ective eustatic sea-level rise for the ice model in frame (A) (5.0 m; see text) is removed from the
system. (C) The di↵erence between predictions generated using the new and old sea-level theories
(frame A minus B).
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predictions.

Figure 2.4B accurately reproduces the fingerprint computed by Clark and Lingle [1977], shown

in Figure 2.2, despite di↵erences in the adopted elastic Earth model (PREM in our case versus

1066B), the geometry of melting (Clark and Lingle [1977] assumed a uniform thinning of the

WAIS), and the sea-level formalism (Clark and Lingle [1977] solved the sea-level equation using a

spatial gridding of the Earth’s surface which had an e↵ective resolution that was significantly less

than our spectral truncation). Figure 2.4B is characterized by peak values in the north Atlantic and

Indian Oceans of 1.19, and a global peak value of 1.25 in the north Pacific Ocean. These values are

less than one percent lower than the associated peaks in Figure 2.2. Our calculations also show the

same tapering down to progressively lower contour values toward the shorelines in oceanic regions.

Our results, in contrast to those in Figure 2.2, show variations in sea level over both land and

water, and these global patterns confirm our earlier physical argument for the tapering. Namely,

this trend is due to ocean loading, which causes a downward flexure of the oceans and an upward

flexure of the continents.

A comparison between Figures 2.4A and B indicates that the new sea-level theory described in

the last section yields a far-field signal that is characterized by significantly enhanced sea-level rise

relative to the theory adopted by Clark and Lingle [1977]. The peaks in the north Atlantic and

north Pacific ocean reach 1.32 and 1.37, respectively, and both have migrated closer to the coastlines

of North America, while the peak in the Indian Ocean is 1.33. The di↵erence plot (Figure 2.4C)

indicates that the largest enhancements occur on the coasts of the U.S., and in particular the west

coast; in these regions, the new theory predicts a normalized sea-level rise ⇠0.15 higher than the

older theory, or 0.8 m for an EEV of 5 m. A similar enhancement occurs over the southern Indian

Ocean.

The pattern evident in Figure 2.4C is strongly suggestive of a dominant contribution from
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Figure 2.5: Decomposition of the di↵erence between predictions of sea-level change due to the
collapse of the WAIS based on the new and old sea-level theories (i.e., Figure 2.4C). Specifically,
the di↵erence is decomposed into contributions associated with (A) feedback due to Earth rotation
and (B) the expulsion of water from uplifting and flooded marine-based sectors of the now-vanished
ice sheet. (C) and (D), as in (A) and (B), except for the case of the EAIS and a decomposition of
the di↵erence plot shown in Figure 2.7C.
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rotational e↵ects, which are characterized by the same “quadrential” sea-level geometry [e.g., Milne

and Mitrovica, 1996; Mound, 1998]. We explore this issue in detail in Figure 2.5A, where we isolate

the contribution to the signal from rotational feedback. The figure shows the di↵erence between

a prediction based on the old theory (Figure 2.4B) and a second prediction, also based on the old

theory, in which we add the contribution to sea-level change from perturbations in Earth rotation.

In addition, Figure 2.5B shows the di↵erence between a calculations based on the new theory

(Figure 2.4A) and the old theory where we once again incorporate rotational e↵ects; i.e., the figure

plots the part of the discrepancy between the old and the new theory that is not explained by

rotational feedback.

The physics of rotational feedback is outlined in Figure 2.6 and the associated caption. A

reorientation of the rotation pole is accompanied by a rise in sea level in quadrants that the local

pole (either the north pole in the northern hemisphere or the south pole in the southern hemisphere)

is moving away from and a fall in sea level in antipodal quadrants. The maximum sea-level signal

will be 45� from the poles. In our calculations the collapse of the WAIS leads to a shift in the

rotation pole of 92 m per metre of e↵ective eustatic sea-level rise (or ⇠ 0.46 km for an EEV of

5 m); the direction of the polar wander is such that the south pole moves toward the West Antarctic

(253�W longitude) and the north pole moves toward India (73� W). Accordingly, the maximum

positive sea-level rise due to rotational feedback occurs over North America and the Indian Ocean

(while the antipodal regions of sea-level fall occur in Asia and the southeast Pacific). This positive

signal, which reaches a magnitude of 0.11 (or ⇠ 0.6 m for an EEV of 5 m), is clearly responsible

for a large part of the enhanced sea-level rise over North America and the Indian Ocean in Figure

2.4A relative to Figure 2.4B. Moreover, the contribution in Figure 2.5A is also responsible for the

fact that the peak sea-level predictions obtained using the new theory (Figure 2.4A) occur closer

to the U.S. coastlines than the calculations generated using the old theory (Figure 2.4B).
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Figure 2.6: Schematic illustrating the geometry of the rotational feedback contribution to sea level.
(A) and (B) show the orientation of the centrifugal potential for an Earth model prior to the melting
event (t0) and some time after the melting event (t

j

), respectively. From t0 to t
j

the rotation pole,
which was initially vertical, is assumed to have moved in a clockwise direction (compare frames A
and B) relative to the solid surface of the planet. (C) shows the di↵erence in centrifugal potential
between the two frames (B minus A) associated with the true polar wander event. The geometry
in frame (A) is given by the spherical harmonic degree two and order zero harmonic, while the
perturbation in this potential, the so-called rotational driving potential, has a spherical harmonic
degree two and order one (quadrential) geometry (frame C). The orientation in (C) is such that the
driving potential is positive in quadrants that the local pole (N in the north and S in the south) is
moving away from (shaded regions) and negative in the antipodal quadrants. The driving potential
is zero along two great circles; the first is along the equator, and the second is perpendicular to
both the first great circle and the great circle that defines the pole path. The driving potential is
at a maximum 45� from the pole. The rotational feedback signal in sea-level has essentially the
same geometry as the driving potential shown in (C), although the former is perturbed by loading
e↵ects.
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The relatively large rotational feedback signal in response to the collapse of the WAIS may

be surprising given that the location of the Antarctic, close to the pole, would seem to make any

loading from the region a somewhat ine�cient mechanism for driving polar wander. However, the

centre of mass of the West Antarctic is ⇠ 10� from the south pole, and this displacement is clearly

su�cient to drive a significant reorientation of the pole.

The second contribution that distinguishes the new predictions from the old, which is shown in

Figure 2.5B, is more geographically uniform in the far-field of the West Antarctic. This contribution

is primarily due to water being pushed out of the marine-based sector of the exposed West Antarctic

as this region rebounds elastically in response to the melting. To investigate this issue, we re-plot,

in Figure 2.7A, the total sea-level change driven by WAIS collapse (Figure 2.4A) in a new projection

centred on the south pole. The figure shows that there is a significant fall in sea level within the

West Antarctic, reaching ⇠ 17 times the amplitude of the EEV, driven by the radial uplift of the

crust and the loss of gravitational attraction toward the now-vanished WAIS. In any marine-based

sectors of the West Antarctic (i.e., in regions covered by water) this sea-level fall means that water

is being pushed out of the region. The expulsion of water from these marine-based sectors is

responsible for a normalized sea-level rise of ⇠0.07 (or ⇠ 0.3 m for an EEV of 5 m in Figure 2.5B).

Over North America and the Indian Ocean the rotational feedback and water expulsion signals

constructively interfere and the new sea-level theory predicts a (normalized) enhancement of the

sea-level rise relative to old calculations [Clark and Lingle, 1977]. Over the southeast Pacific and

Asia, where the two e↵ects destructively interfere, the new theory predicts a somewhat smaller

sea-level signal than the old calculation (Figure 2.4C).

Next, we turn to the case of the collapse of marine-based sectors of the EAIS (EEV=14.2 m).

Figures 2.8A and B are predictions of the sea-level change just after this collapse based on the

new sea-level theory (equations 2.21-2.23) and the older theory derived by Farrell and Clark [1976]
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Figure 2.7: (A) A prediction of the change in sea level over the south pole following the collapse of
the WAIS. The figure is a polar projection out to 60�S of the results plotted in Figure 2.4A. (B) as
in (A), except for the case of a collapse of the EAIS (a polar projection of Figure 2.8A).

(equations 2.24-2.26), respectively. The di↵erence between the two is shown in Figure 2.8C. The

normalized sea-level rise computed using the new theory is increased by ⇠0.2 in the northwest

Pacific and the southwest Atlantic (which translates to a di↵erence of ⇠ 3 m if we use an EEV of

14.2 m), while it is reduced by ⇠0.08 in the north Atlantic.

The origin of these di↵erences is evident in Figures 2.5C and D, where we once again decompose

the signal into contributions from rotational feedback (Figure 2.6) and water expulsion from the

marine-sectors of the melting ice complex (Figure 2.7B). As in the predictions for WAIS collapse,

the expulsion yields a relatively uniform sea-level rise over the far-field of the now-vanished ice

sheet. The normalized amplitude of this signal is ⇠0.07. A far more significant di↵erence between

the WAIS and EAIS collapse scenarios is the orientation of the rotational feedback signal (compare

Figures 2.5A and C). Melting of the marine sectors of the EAIS leads to a displacement of the

rotation pole of ⇠ 102 m per metre of EEV. The direction of the displacement is such that the

south pole moves toward Wilkes Land in the East Antarctic (specifically, along ⇠ 131�E longitude)
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Figure 2.8: As in Figure 2.4, except for predictions based on a scenario where marine-based sectors
of the EAIS collapse. In this case, the e↵ective eustatic value used in the normalization of the
results is 14.2 m. A decomposition of the di↵erence plot (C) into contributions from rotational
feedback and water expulsion from the uplifting marine-based sectors of the EAIS is shown in
Figure 2.5C and D, respectively.
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and the north pole moves along ⇠ 49�W longitude, or roughly toward Newfoundland. The resulting

feedback signal is a sea-level fall over the north Atlantic and the south Indian Ocean and a sea-level

rise in antipodal quadrants (Figure 2.5C), each with a (normalized) magnitude of 0.13. (This value

is slightly higher than the amplitude in Figure 2.5A because marine sectors of the EAIS have a

centre of mass that is slightly more distant from the south pole than the centre of mass of the

WAIS.) Thus, for this melting scenario our new sea-level theory predicts a significantly enhanced

sea-level rise over the north Pacific and the south Atlantic, where rotational feedback and expulsion

constructively interfere, and a reduced sea-level rise over the north Atlantic, where the interference

is destructive and the rotational e↵ect dominates, relative to the old theory.

We note that polar motion driven by melting from the WAIS and marine sectors of the EAIS

are roughly in opposite directions. As a consequence, if both melting scenarios were active and

with similar EEVs then the total rotational feedback (the sum of Figures 2.5A and C) would have

a significantly smaller amplitude than the individual feedback signals. In other words, in this case

the common view that melting from the entire AIS would lead to relatively little net true polar

wander (and sea-level feedback signal) would be correct.

Our focus, to this point, has been on the short-term, elastic response to rapid melting from

either the WAIS or the EAIS sectors of Antarctica. In Figure 2.9 we show predictions of the change

in sea level over a 500 year time window following this immediate elastic response. The calculations

adopt the radial profile of mantle viscosity discussed above. As the system evolves forward from the

short term response, the ongoing uplift of marine-based sectors of the vanished ice sheet would lead

to a continued expulsion of water. However, the physics of viscoelastic adjustment is such that the

associated rise in sea level is largely limited to areas just outside the zone of melting. Specifically,

the subsidence of the “peripheral bulge” produces a ring of sea-level rise that accommodates much

of the water migration due to expulsion. In the far-field oceans the change in sea level is more
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Figure 2.9: (A) Change in sea level, normalized by the e↵ective eustatic value, in the 500 year
period following the “elastic” sea-level fingerprint associated with WAIS melting shown in Figure
2.4A. The total sea-level change at this time is the sum of the two maps. (B) As in frame (A),
except for the EAIS melting scenario considered in Figure 2.8A. The calculations in this figure, in
contrast to those shown in Figures 2.4 and 2.8, are sensitive to the adopted radial profile of mantle
viscosity. The profile we adopt is specified in detail in the text.
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moderate, and the small trend from ocean to continent regions reflects both ocean loading e↵ects

(which tend to deflect the continents upward) and a superimposed rotational feedback. In any

event, we conclude that the elastic fingerprints patterns described above (Figures 2.4 and 2.8) will

not be altered significantly in the far-field of Antarctica in the centuries following any collapse of

the ice sheets.

The goal of this section has been to provide updated predictions of the sea-level change that

would follow any future collapse of various marine-based sectors of the AIS. As we have shown,

an accurate prediction of this change, and in particular its geographic variation, requires a sea-

level theory that includes self-gravitation of the surface mass load, deformation of the solid Earth,

inundation and subsequent adjustment of marine-based sectors of the ice sheet, and the feedback

into sea level of contemporaneous perturbations in the Earth’s rotation.

We have been motivated, in part, by recent discussions of sea-level projections associated with

the disappearance of the WAIS. As an example, Chapter 10 of the penultimate IPCC report cites a

sea-level rise of 5 m in this case [Solomon et al., 2007], which is an estimate of the uniform rise in sea

level within the global oceans after all depressions in marine sectors of the West Antarctic have been

filled to sea level. We have coined the term “e↵ective eustatic value” for this rise, to distinguish

it from the eustatic value (⇠ 8 m) associated with the total volume of the WAIS. It has been

important to note that the EEV ignores a prediction, now thirty years old, that demonstrated the

significant geographic variation in sea level that would follow the melting event [Clark and Lingle,

1977]. Specifically, Clark and Lingle [1977] showed that load self-gravitation, and the associated

adjustment of the crust, would lead to a dramatic migration of water from the near field to the far

field of the melt zone; the net e↵ect would be a sea-level fall in the vicinity of the melting, and a

sea-level rise about 20% greater than the EEV in the far field. We have shown that the expulsion

of water from marine-based sectors of the WAIS and rotational feedback are capable of increasing
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this enhancement relative to the EEV by about a factor of two in regions where the two processes

constructively interfere (e.g., the coastlines of North America and the Indian Ocean). In locations

where the two processes destructively interfere, the net e↵ect is a reduction in sea level relative

to predictions based on the Farrell and Clark [1976] theory adopted by Clark and Lingle [1977]

(Figure 2.4).

Similar conclusions can be drawn from our calculation in which all marine sectors of the EAIS

disappeared (Figure 2.8). In this case, over the northwest Pacific and the south Atlantic, rotational

feedback and water expulsion act in tandem to double the enhancement of sea-level rise (relative to

the EEV) predicted using the theory of Farrell and Clark [1976]. In contrast, in the north Atlantic,

where the two processes are of opposite sign, the net predictions based on the two sea-level theories

are nearly equal.

The importance of water expulsion and rotation can be further illustrated by considering results

for specific geographic sites, rather than simply comparing peak predictions based on the new and

old theories (since these peaks predicted for each theory may not be located at the same place).

In Table 2.1 we list normalized sea-level predictions for a set of 18 sites obtained using the two

theories. The table includes results for both of the melting scenarios considered in this paper;

namely, melting of the entire WAIS and all marine sectors of the EAIS. In the case of sites along

the U.S. coast and WAIS collapse, the old theory predicts a normalized sea-level change of ⇠ 1.1,

or a 10% enhancement above the e↵ective eustatic value. In contrast, the new theory increases this

enhancement by a factor of 2.5, or ⇠ 0.7 m of additional sea-level rise if we adopt an EEV of 5 m.

In the case of the EAIS scenario, the old theory yields a sea-level change in southern South America

(e.g., Santiago, Buenos Aires) of ⇠ 6� 7% above the EEV, while this enhancement is increased by

a factor of four (to 26-28%) when the new theory is adopted. A similar (⇠ 20%) increase in the

normalized prediction is also evident in Japan between the old and new theories.
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Table 2.1: Sea Level predicted at a selection of globally distributed sites.

Site WAIS EAIS
New Theory Old Theory New Theory Old Theory

Vancouver 1.26 1.10 1.15 1.11
Portland 1.26 1.11 1.07 1.11
San Francisco 1.31 1.14 1.19 1.14
Los Angeles 1.29 1.13 1.17 1.13
Boston 1.27 1.12 1.08 1.11
New York 1.26 1.11 1.07 1.11
Washington 1.25 1.09 1.07 1.10
Savannah 1.26 1.11 1.12 1.11
Miami 1.29 1.14 1.16 1.15
Rio de Janeiro 1.02 1.01 1.29 1.11
Buenos Aires 0.82 0.85 1.28 1.06
Lima 1.05 1.09 1.25 1.12
Santiago 0.80 0.85 1.26 1.07
London 1.11 1.09 1.09 1.09
Lisbon 1.15 1.11 1.09 1.11
Chennai 1.11 1.11 1.23 1.10
Melbourne 1.07 0.99 0.60 0.68
Tokyo 1.16 1.16 1.38 1.17

We conclude that at many locations the rotational feedback and water expulsion contribute

significantly more than load self-attraction, which has been the focus of many previous discussions

of sea-level fingerprints, including the Clark and Lingle [1977] estimate of sea-level change following

melting from the WAIS. In this regard we note that while rotational feedback would be active

throughout the melting event, water expulsion would only be activated once marine-based sectors

of ice disappear and inundation begins.

2.4 Results and Discussion of Post Glacial Sea-Level Changes

In this section we use the results of a suite of illustrative sea-level calculations to review in somewhat

more detail the relevant physics of post-glacial sea-level change on longer timescales. We separate

the contributions to sea-level change from current, rapid ice distribution changes (as discussed in

Section 2.3) from ongoing sea-level changes due to past ice-sheet evolution. In particular, we simu-

late sea-level changes following two scenarios of ice-sheet retreat, one characterized by widespread

ice loss and the other by local ice loss. The simulations are performed using the version of the sea-
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Figure 2.10: Pattern of ice loss considered in two illustrative ice-age sea-level simulation. Thickness
of grounded ice loss (in meters) over the course of a 200 yr model melt phase involving widespread
retreat of the Antarctic Ice Sheet. Inset: Area outlined in grey shows the thickness of grounded ice
loss (in meters) over the course of a 200 yr model melt phase that provides a scenario of localized
ice retreat within a small region near the Ross Ice Shelf.

level theory described in Section 2.2 valid for a gravitationally self-consistent, rotating, viscoelastic

Earth model with migrating shorelines. In each scenario, we alter the ice geometry rapidly in a

single, 200 year time step at the start of the simulation and then hold the ice distribution constant

for 10,000 ky. Sea-level changes are predicted every 200 years after the ice-melting event.

To begin, consider the widespread ice loss across the AIS depicted in Figure 2.10. This ice

geometry was constructed by taking the di↵erence in ice distribution between 11 ka and 10 ka

predicted in simulation of the AIS through the last deglaciaion using the Pollard and DeConto

[2012b] ice-sheet model that we discuss in Chapter 6. There is an associated loss of grounded ice

of 90,000 km3, equivalent to 1.78 m of globally averaged sea-level rise (after account is taken of

water inundation into Antarctic marine sectors freed of ice at 10 ka).

Figure 2.11A shows a global map of the sea-level change immediately following the melting event
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and Figure 2.11B shows the same field focused on Antarctica. On this short timescale, deformation

of the Earth can be considered purely elastic, so the second and fourth terms in equation 2.55

which describe the viscous components of the sea-level perturbations can be neglected and the

physical e↵ects discussed in Section 2.3 drive the sea-level changes. As in Figure 2.4A, the pattern

of sea-level change is dominated by a large sea-level fall in the vicinity of ice melt (i.e., the near-

field) driven by gravitational e↵ects and elastic rebound of the solid surface, and a sea-level rise

at distance from the ice sheet (i.e., the far field) that reaches up to ⇠ 30% higher than the global

average. Ocean loading and a signal due to load-induced perturbations in Earth’s rotation vector

also contribute to the spatial variability of the sea-level change [see Section 2.3, Mitrovica et al.,

2011].

Figures 2.11C and 2.11D show the sea-level change predicted over the 10 ky period following

the instantaneous sea-level response plotted in Figures 2.11A and 2.11B. (Note, once again, that

there is no change in ice geometry during this time period.) In this case, the sea-level change

is strongly dominated by viscous deformation of the solid Earth in response to the unloading of

ice and loading of melt water (with associated gravitational and rotational e↵ects). Mitrovica

and Milne [2002] have summarized the various physical e↵ects that contribute to this pattern of

sea-level change and we review these e↵ects here. There is an ongoing, large amplitude sea-level

fall in regions that experienced ice loss as the solid surface viscously rebounds towards isostatic

equilibrium. The nearby surrounding areas experience a sea-level rise as subsidence occurs at the

periphery of regions of ice loss. These e↵ects are described on the left side of the schematic in Figure

2.12A and its caption. The location and amplitude of the peripheral subsidence is sensitive to both

the geometry of ice loss and the Earth model. In the far-field, there is a broad region of relatively

small amplitude sea-level fall due largely to the migration of water towards the Antarctic to fill the

accommodation space created within peripheral regions experiencing subsidence (see right side of
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Figure 2.11: Initial and subsequent (long term) patterns of sea-level change following the ice loss
scenario shown in Figure 2.10. (A, B) Sea-level change immediately following the rapid loss of
grounded ice depicted in Figure 2.10, plotted globally (A) and local to the Antarctic (B). (C,
D) Total sea-level change in the 10 ky period following the initial sea-level perturbation, plotted
globally and locally (D). No ice loss occurs during this latter 10 ky time period. Labels ‘A’, ‘B’
and ‘C’ refer to the locations of the time series plotted in Figure 2.13.
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schematic in Figure 2.12A). This process is known as ocean syphoning [Mitrovica and Milne, 2002].

There is additional spatial variability in the far-field associated with the viscous e↵ects of meltwater

loading, including a tilting of the crust at continental margins, as illustrated in Figure 2.12B. This

so-called continental levering [Nakada and Lambeck, 1989; Mitrovica and Milne, 2002] is reflected

in a thin o↵shore zone of sea-level rise; the accommodation space created by this deformation also

contributes to ocean syphoning [Mitrovica and Milne, 2002].

In Figure 2.13, we plot time series of the total sea-level change (blue curves), as well as the

radial displacements of the sea surface (green curves) and solid surface (red curves) relative to their

positions at the start of the simulation. Each column corresponds to a di↵erent site, as labeled on

the maps in Figure 2.11. These sites sample, from left to right in Figure 2.13, the far-field, near-field

and the peripheral bulge (labeled ‘A’, ‘B’ and ‘C’, respectively, on the maps in Figure 2.11).

Within the far-field (Figure 2.13A), the majority of the initial sea-level jump is due to a rapid

rise in the sea surface as meltwater is added to the ocean. Subsequently, there is a gradual fall

in sea level as a drop in the sea surface height due to syphoning outpaces the ocean load-induced

subsidence of the solid surface. For the site within the region of ice loss (Figure 2.13B), there is an

instantaneous sea-level fall of 19.4 m immediately following the melt event. This is comprised of a

6.2 m drop in the sea surface due to the loss of gravitational attraction toward the ice, and a 13.2 m

rise of the solid surface due to elastic rebound. The subsequent sea-level fall (⇠ 170 m in 10 ky) is

almost entirely due to viscous relaxation of the solid Earth towards isostatic equilibrium. There is

also a small sea surface height increase at this location due to the gradual relaxation of the initial

gravitational perturbation as the solid surface rebounds. Finally, the site at the periphery of the

melt event (Figure 2.13C) initially experiences a sea-level fall due to a combination of gravitational

and (elastic) deformational e↵ects. Subsequently, as the region experiences crustal subsidence due

to the adjacent ice unloading, and sea surface uplift due to the weakening of the initial gravitational
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B

Figure 2.12: Schematic taken from Mitrovica and Milne [2002] with minor modifications illustrating
the physics of post-glacial sea-level changes. Frame (A) illustrates post glacial rebound (left),
peripheral bulge subsidence (middle) and ocean syphoning of equatorial regions (right). Frame (B)
illustrates the continental levering e↵ect caused by ocean loading (left) and the associated sea-level
fall in open ocean regions (right).
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Figure 2.13: Total change in sea level and the surfaces bounding sea level at specific sites following
the ice loss scenario in Figure 2.10. (A) Change in sea level (blue), sea surface (green) and solid
surface (red) heights as a function of time computed for the far-field (subtropical North Atlantic)
site labeled ‘A’ in Figure 2.11A. Sea surface and crustal heights are defined relative to the center
of the Earth. (B) same as Figure 2.13A, except for the site within the region of ice loss (western
Ross Ice Shelf) labeled ‘B’ in Figure 2.11B. (C) same as in Figure 2.13A, except for the site at the
periphery of the ice loss region (outer Ross Sea) labeled ‘C’ in Figure 2.11.

perturbation, the site experiences a monotonic sea-level rise.

Next, we consider results (Figure 2.14) for the localized melting scenario shown in Figure 2.10

(inset), in which only a small sector near the Ross Ice Shelf experiences ice loss. In this case, the

melt event involves a change in ice volume of ⇠11,000 km3, equivalent to a global average sea-level

rise of 0.11 m when accounting for the inundation of marine sectors freed of ice. The physical e↵ects

active in this scenario are the same as those in the first scenario. Note that while the volume of

meltwater is an order of magnitude smaller than in the scenario of Figure 2.10, the sea-level fall

within the region of melting is significant on both short and long timescales. For example, the site

labeled ‘B’ in Figure 2.14B experiences an initial sea-level fall of 9 m, comprised of a 2.5 m drop in

the sea surface height and a 6.5 m (elastic) uplift of the solid surface. Over the subsequent 10 ky,

sea level falls an additional 80 m at this site (Figure 2.14D).

The results described in this section highlight the strong geographic variability and temporal

complexity in sea-level change following an ice melting event. This complexity becomes even more
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Figure 2.14: Initial and subsequent (long term) patterns of sea-level change following the ice loss
scenario shown by the grey box in the inset of Figure 2.10. Format as in Figure 2.11, except frames
(B) and (D) are further zoomed in on the region of ice loss. This scenario involves ice loss localized
to an area near the Ross Ice Shelf.
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pronounced as the ice sheet evolves and the loci of melting vary in space and time. In Chapters 3,

5 and 6 we present simulations of ice-sheet retreat through the entire deglaciation phase of an ice-

age cycle. In these simulations, at any given time during the ice-sheet retreat, the total predicted

sea-level change is a combination of a short timescale signal governed by the total ice melt and a

viscous signal associated with the full history of ice melting.
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Chapter 3

Laurentide-Cordilleran Saddle Collapse as a Contribution to

Meltwater Pulse 1A

3.1 Introduction

There is growing recognition that the last deglaciation phase of the Ice Age was punctuated by a

series of meltwater pulses associated with the rapid collapse of ice sheet sectors and catastrophic

drainage of proglacial lakes [e.g., Fairbanks, 1989; Barber et al., 1999; Clark et al., 2002; Deschamps

et al., 2012; Törnqvist and Hijma, 2012]. The most prominent example is Meltwater Pulse 1A (mwp-

1A), which involved ⇠20 meters of globally averaged sea-level rise in under 500 years at around

14 ka [Deschamps et al., 2012].

The source or sources of mwp-1A are uncertain and controversial. It has been assumed that

retreat of the Laurentide Ice Sheet [Kennett and Shackleton, 1975; Fairbanks et al., 1992], in

particular the southern sector of the ice sheet [Leventer et al., 1982; Keigwin and Jones, 2010;

Andrews et al., 1994; Peltier, 2004], dominated the meltwater flux. However, a significant southern

Laurentian source for mwp-1A is inconsistent with oxygen isotope records from the Gulf of Mexico

[Carlson, 2009]. Moreover, analysis of sea-level records across the mwp-1A time window at Barbados

and Sunda Shelf rule out a sole Southern Laurentide source [Clark et al., 2002; Bassett, 2005]. The

This chapter is in preparation for submission with Lauren Gregoire, Jerry X. Mitrovica and Tony Payne.
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fingerprinting study of Clark et al. [2002] suggests either globally distributed sources for mwp-1A

or a dominant contribution from the Antarctic Ice Sheet. The latter scenario is supported by

climate modeling [Weaver, 2003], analyses of far-field sea-level records during the post-mwp-1A

time period [Bassett, 2005], and a fingerprinting study including newly collected sea-level data

from Tahiti [Bard et al., 2010]. In contrast to these analyses, ice-sheet modelling studies indicate

that the excess volume of the Antarctic Ice Sheet at Last Glacial Maximum (LGM) relative to the

modern was smaller than previously believed, equivalent to a globally averaged sea-level change of

5-9 meters, which implies a relatively minor contribution from the AIS to mwp-1A [Whitehouse

et al., 2012a; King et al., 2013; Ivins et al., 2013; Gomez et al., 2013].

Recently, Gregoire et al. [2012] modeled the retreat of the Laurentide Ice Sheet (LIS), the

Cordilleran Ice Sheet (CIS) and the Greenland Ice Sheet (GIS) from the Last Glacial Maximum to

the present day. They concluded that the collapse of the ice saddle between the LIS and CIS may

have been responsible for a significant component of mwp-1A. The consistency of this scenario with

observations of sea-level change across the mwp-1A time window have not been explored. In this

chapter we compute the post-LGM geometry of sea-level change associated with the deglaciation

model of Gregoire et al. [2012] and compare these results with available sea-level records from

Barbados, Sunda Shelf and Tahiti.

3.2 Methods

We compute post-glacial sea-level changes using the gravitationally self-consistent theory described

in Chapter 2 [Kendall et al., 2005] that accounts for viscoelastic deformation of the solid Earth,

time-dependent shorelines, including the influx of water into sectors freed of marine ice, and the

feedback into sea level of perturbations in Earth rotation. We adopt a 1-D (depth varying) Maxwell

Earth model with a spherical harmonic truncation at degree and order 256. The elastic and density
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structure of the Earth model is prescribed by the seismic model PREM. We consider two di↵erent

radial profiles of mantle viscosity. The first, the VM2 model of Peltier [2004], which is associated

with the ICE5G global ice history reconstruction, is characterized by an elastic lithosphere of

thickness of 90 km, upper mantle viscosity close to 5⇥ 1020 Pa s, and a lower mantle viscosity that

remains close to 2� 3⇥ 1021 Pa s. The second, henceforth model LM, has a lithospheric thickness

of 120 km, and upper and lower mantle viscosities of 5⇥ 1020 Pa s and 5⇥ 1021 Pa s, respectively.

The latter model has been preferred on the basis of independent analyses of ice-age data sets (e.g.,

Lambeck et al., 1998; Mitrovica and Forte, 2004).

We normalize the sea-level predictions presented below using the e↵ective eustatic value of

sea-level change (EEV) associated with the Gregoire et al. [2012] deglaciation model. As defined

in Chapter 2, the EEV is defined as the globally uniform shift in sea level equal to the meltwater

volume, after the latter has been corrected for marine-based sectors that are exposed by the melting

ice sheets [Gomez et al., 2010b]. In practice, we compute the EEV using the full sea-level theory

that accounts for migrating shorelines described, but we do so on a rigid Earth fixed to modern

topography, with rotational and gravitational e↵ects turned o↵.

The Gregoire et al. [2012] model for the LIS, CIS and GIS extends from 21,000 (Last Glacial

Maximum) to present and we compute post-glacial sea-level changes across this entire period.

Figure 3.1A shows the meltwater flux associated with changes in grounded ice over a time window

that encompasses the collapse of the ice saddle between the LIS and CIS. The flux peaks at ⇠ 0.30 Sv

during this interval, with a background flux of ⇠0.1-0.15 Sv. Figure 3.1B and 3.1C show snapshots

of the ice cover at 11.8 ka and 11.3 ka of model time, which bound the main phase of saddle collapse.

The ice saddle collapse across this interval is located in northwestern Canada, but ice cover also

thins in the vicinity of Hudson Bay. Gregoire et al. [2012] suggest that the model time window of

11.8-11.3 ka, which corresponds to an EEV of 10.47 m, should be interpreted as coinciding with
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Figure 3.1: The Gregoire et al. [2012] model of Laurentide, Cordilleran and Greenland Ice Sheet
evolution through the Meltwater Pulse 1A event. (A) Meltwater flux from grounded ice (in sver-
drups) as a function of model time (in ky) before, during and after the ice saddle collapse event
they associate with mwp-1A. (B-C) Snapshots of grounded ice thickness over North America near
the start (B) and end (C) of the saddle collapse.
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the main phase of mwp-1A (i.e., ⇠14 ka) on the basis that the timing of mwp-1A is consistent with

geochronological constraints on the opening of an ice-free corridor between the LIS and CIS.

3.3 Results

We begin with an analysis of the global geometry of sea-level change predicted during the mwp-1A

event. Figure 3.2A shows the normalized sea-level fingerprint for the saddle collapse across the

11.8-11.3 ka time window of the Gregoire et al. [2012] model computed using the VM2 viscosity

model. Figure 3.2B shows the same field in the vicinity of the saddle collapse and resolves the near

field structure of the fingerprint. The general physics of such fingerprint was discussed in detail in

Chapter 2. Gravitational and deformational e↵ects associated with a rapid ice mass loss produce

a large sea-level fall in the vicinity of the melt zone, and a greater than average sea-level rise in

the far field. Ocean meltwater loading leads to a subsidence of the sea floor and a gradient in

the computed sea-level change close to shorelines. Finally, the surface mass redistribution causes

the Earth’s rotational pole to shift towards the center of mass of the ice loss, contributing to the

azimuthal asymmetry evident in the sea-level fingerprint.

Since we are considering the sea-level change across a finite time interval in Figure 3.2A and

B, there may be a contribution to the prediction from viscous e↵ects associated with the full time

history of the deglaciation up to 11.3 ka. We quantify this contribution in Figures 3.2C and D,

where the former is the normalized sea-level change across the 11.8-11.3 ka time window computed

assuming a purely elastic response of the solid Earth to the change in the surface mass load, and

the latter is the di↵erence between the total signal (frame A) and the elastic signal (frame C).

That is, Figure 3.2C represents the usual sea-level fingerprint computed by including only elastic

deformation (henceforth the “elastic fingerprint”), while Figure 3.2D represents the departure from

this fingerprint associated with the viscous response across the 500 yr time window associated with
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Figure 3.2: (A) Normalized sea-level fingerprint computed for the saddle collapse between 11.8-
11.3 ka in the deglaciation model of Gregoire et al. [2012]. (B) As in (A), except the plot focuses
on the near field of the ice collapse. (C) Normalized sea-level fingerprint computed assuming only
elastic deformation of the Earth. (D) The di↵erence between frames (A) and (C), isolating the
contribution to the computed sea-level change due to viscous deformation. The green stars in
frame (D) indicate the location of (from left to right): Tahiti, Barbados and Sunda Shelf.

the full time history of the surface load changes between 21 ka (LGM) and 11.3 ka.

In the vicinity of the regions of ice loss, the elastic fingerprint is characterized by widespread

uplift that extends well beyond the margins of the ice loss. Note, in this regard, the extended

and smooth zone of sea-level fall in Figure 3.2C relative to Figure 3.2A. The di↵erence between
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these two global fingerprints reflects the contribution from viscous e↵ects of smaller spatial scale,

including post-glacial uplift and subsidence of peripheral bulge regions (the blue zones in Figure

3.2D). Note that the signal from peripheral bulge subsidence extends to Central America, where it

leads to a ⇠ 10 � 15% augmentation of the elastic sea-level fingerprint at Caribbean Island sites.

Next, consider the signal associated with viscous adjustment at locations beyond the peripheral

bulges, in the so-called far-field of the ice loss. Several physical e↵ects contribute to this signal.

First, the shift in the orientation of the Earth’s rotation axis associated with viscous deformation

of the solid Earth gives rise to a sea-level signal with quadrential (spherical harmonic degree two,

order one) geometry (Figure 3.2D). This signal is characterized by sea-level fall in the southeast

Pacific and Asia, and sea-level rise in the Indian Ocean and across North America. (As discussed

in Chapter 2, ongoing surface mass redistribution and the associated elastic deformation also gives

rise to a signal associated with rotational feedback, which is apparent in Figure 3.2C.) Second,

a background migration of water out of the far-field and into the regions experiencing peripheral

bulge subsidence leads to a large-scale drop in sea-surface height (and thus sea level) in Figure

3.2D. This e↵ect is commonly termed “ocean syphoning” [Mitrovica and Milne, 2002]. Finally,

ongoing viscous adjustments associated with the full history of ocean loading since LGM produce

a gradient in the predicted sea-level change near shorelines in Figure 3.2D, contributing a sea-level

fall onshore and a sea-level rise o↵shore that is termed “continental levering” [Mitrovica and Milne,

2002]. These three e↵ects combine to produce a sea-level fall in equatorial and southern ocean

regions that can reach ⇠ 10% of the sea-level rise associated with the elastic fingerprint.

As discussed in the Introduction (Section 3.1), constraints on the change in sea-level across the

mwp-1A event exist at three sites: Barbados, Tahiti and Sunda Shelf (shown by the stars on Figure

3.2D). Deschamps et al. [2012] estimate the sea-level jump associated with mwp-1A to be 16±4 m

at Barbados and 17 ± 5 m at Tahiti. They refined the latter range to 16 ± 2 m on the basis of
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Figure 3.3: Normalized sea-level fingerprints at Barbados, Tahiti and Sunda Shelf (as labeled)
computed for the mwp-1A event in the Gregoire et al. [2012] reconstruction as a function of the
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several lines of argument. The original study of the Sunda Shelf record concluded that the sea-level

jump across mwp-1A was up to 16 m at this site [Hanebuth et al., 2000]. However, recent work by

Liu and Milne [pers. comm.], which accounts for the fact that the mwp-1A event is bounded by

data collected at di↵erent sites, suggests that the sea-level rise associated with mwp-1A at Sunda

Shelf was 12 ± 3 m.

It is clear from the results in Figure 3.2D that the viscous component of sea-level change can have

a significant impact on predictions of the sea-level rise associated with the mwp-1A event. However,

this contribution will depend on the duration of the event, which is uncertain. Deschamps et al.

[2012] concluded, on the basis of the Tahiti record, that mwp-1A took place in less than ⇠350 years.

Moreover, since the ice-sheet model employed by Gregoire et al. [2012] does not accurately capture

the timing of the saddle collapse, the modeled duration of the event may also be suspect. To

address this uncertainty, we have repeated the fingerprint calculation in Figure 3.2 for a suite of

simulations in which the total change in ice volume between 11.8-11.3 ka (EEV = 10.47 m) was

applied over progressively shorter time windows ranging from 500 ky (as in Figure 3.2A) to 0 ky

(as in Figure 3.2C). The ice history from 21 ka to 11.8 ka was unchanged in all the simulations.

Predictions of the normalized fingerprint at the Barbados, Sunda Shelf and Tahiti computed for

this sequence of calculations is shown in Figure 3.3, where the solid and dashed lines are predictions

based on the VM2 and LM viscosity profiles, respectively.

The predictions at all three sites vary linearly as the duration is increased from zero (the purely

elastic case) to 500 ky. (That is, the perturbation in the normalized fingerprints associated with

viscous e↵ects increases linearly with time over the range of durations considered in Figure 3.3.)

Barbados sits on the peripheral bulge of the saddle collapse and thus, as discussed above, viscous

e↵ects contribute a sea-level rise at this site. In contrast, viscous adjustments contribute a sea-level

fall at Tahiti and Sunda Shelf, which are in the far-field of the saddle collapse. We note that the
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magnitude of the signal due to viscous adjustments is relatively insensitive to the adopted viscosity

model for the range of timestands treated in Figure 3.3.

Clark et al. [2002] computed the sea-level fingerprint for the case of a collapse of the southern

sector of the Laurentide Ice Sheet and the magnitude of the sea-level signal they computed at

Sunda Shelf was ⇠ 50% greater than the prediction at Barbados. The inconsistency between

this prediction and the observed jump in sea-level across mwp-1A at these two sites, which are

of comparable amplitude (12 ± 3 m and 16 ± 4 m, respectively), led them to conclude that this

sector of the Laurentide Ice Sheet could not have been the sole source for the meltwater pulse. This

conclusion was reinforced by the Tahiti record obtained by Deschamps et al. [2012] (a 16 ± 2 m

jump across mwp-1A) since a southern Laurentide source for mwp-1A would produce a sea-level

rise there that was ⇠ 70% greater than at Barbados, which is inconsistent with the observations. In

contrast to this scenario, an Antarctic source for mwp-1A would lead to comparable sea-level rise

at all three sites [Clark et al., 2002], and is thus consistent with all of the observations [Deschamps

et al., 2012].

How does the Gregoire et al. [2012] model of saddle collapse between the Laurentide and

Cordilleran Ice Sheets perform in this regard? The sea-level fingerprint associated with this model

is consistent with the observation of a comparable jump in sea-level across mwp-1A at Barbados

and Sunda Shelf as long as the event occurred over a time span of ⇠300 yr or more (Figure 3.3).

The progressive improvement in the fit to these observations, as one moves from a duration of zero

(the elastic case) to 300 yr or more, is a result of viscous adjustments which, as noted above, raise

sea level within the peripheral bulge (Barbados) and lower sea level in the far-field (Sunda Shelf)

of the saddle collapse (see Figure 3.2). For a mwp-1A duration of 300-500 yr, the saddle collapse

scenario predicts a sea-level jump at Tahiti that is ⇠ 20% greater than the jump at either Barbados

or Sunda Shelf, which cannot be ruled out on the basis of the uncertainty in the observations at
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the three sites. We conclude that the scenario may have been a significant, and indeed dominant,

contribution to mwp-1A.

3.4 Final Remarks

We have computed sea-level changes associated with the Gregoire et al. [2012] model of the evolution

of the Laurentide, Cordilleran and Greenland Ice Sheets since the LGM. Our results show that a

saddle collapse between the LIS and CIS yields a fit to the observed sea-level jump across mwp-

1A at Barbados, Sunda Shelf and Tahiti that is comparable to the fit obtained assuming a sole

Antarctic source and significantly better than the fit predicted for a scenario in which the southern

sector of the Laurentide Ice Sheet is the sole source of the event. It is, of course, possible that a

combination of saddle and AIS collapse may have dominated mwp-1A.

A reduction of the AIS contribution to mwp-1A would bring this estimate into accord with

inferences of excess ice volume in the Antarctic Ice Sheet during the LGM [e.g., Whitehouse et al.,

2012a; King et al., 2013; Ivins et al., 2013; Gomez et al., 2013]. Any further refinement of the

constraints on the source(s) of mwp-1A will require additional high-resolution sea-level records for

the mwp-1A event. As a final point, our analysis suggests that viscous e↵ects cannot be neglected

if the duration of mwp-1A exceeded a few centuries. Therefore, future studies of sea level during

this important period of ice-sheet instability and mass flux should not assume a purely elastic

deformation response of the solid Earth.
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Chapter 4

Sea level as a stabilizing factor for marine-ice-sheet

grounding lines

The potential for climate change to destabilize marine ice sheets poses uncertainty for projections of

future sea-level rise [Oppenheimer, 1998; Solomon et al., 2007; Vaughan, 2008; Smith et al., 2009].

An instability mechanism, whereby ice-sheet thinning or rising sea level leads to irreversible retreat

of the grounding line, is widely predicted for marine ice sheets resting upon reversed bed slopes

[Weertman, 1974; Thomas and Bentley, 1978; Schoof, 2007a; Katz and Worster, 2010]. However,

existing analyses of this instability mechanism have not accounted for deformational and gravita-

tional e↵ects that lead to a sea-level fall (rise) at the margin of a rapidly shrinking (growing) ice

sheet [Mitrovica et al., 2001; Plag and Juettner, 2001; Gomez et al., 2010b, see Chapter 2]. In this

chapter, we present a suite of predictions of gravitationally self-consistent sea-level change follow-

ing grounding line migration. These predictions vary the initial ice-sheet size and also consider the

contribution to sea-level change from various sub-regions of the ice sheet. Using these results, we

revisit a canonical analysis of marine ice-sheet stability [Weertman, 1974] and demonstrate that sea-

level changes local to the grounding line contribute a stabilizing influence on ice sheets grounded

upon reversed bed slopes. We conclude that accurate treatments of sea-level change should be

A version of this chapter was published with Jerry X. Mitrovica, Peter Huybers and Peter Clark in the journal
Nature Geoscience, vol 117, F01013, 2010.

66



incorporated into analyses of past and future marine ice-sheet dynamics.

Weertman [1974] derived the following equation governing the grounding line position L of a

simple, two-dimensional, marine-based, steady state ice sheet (see Figure 4.1A):

�L + D
o

= GL2/9, (4.1)

where � and D
o

are initial, pre-loaded values for the bed slope (positive values denote increasing

depth in direction of ice flow), and the minimum depth of the bed, respectively. With suitable

choices for the accumulation rate, flow parameters, etc., the constant G equals 22.7 m7/9. Physically,

the left-hand-side of this equation represents sea level at the grounding line, D(L), where the ice is

at the critical flotation thickness. The right-hand-side of the equation describes the ice thickness

(in terms of an equivalent thickness of water) required such that accumulation of ice balances mass

flux across the grounding line.

The solution of Equation (4.1) for various parameter choices is illustrated in Figure 4.1B. As

an example, the case of D
o

= 200 m and � = 0 leads to one steady state solution (blue circle)

while increasing � to 0.4 m/km yields two steady state solutions (red, green circles). On the figure

we adopt the terms “unstable” or “stable” following the arguments of Weertman [1974], which we

summarize here. Consider the steady state given by the green dot in Figure 4.1B. If the ice sheet

grows by some incremental amount, �L, then sea level at the new grounding line would be too high

for ice flux across the grounding line to be balanced by accumulation of ice through the interior

(i.e., the dashed red line falls above the solid black line at L+ �L). Specifically, the ice loss will be

greater than accumulation and the ice sheet will shrink, ultimately returning to its original steady-

state position. Similarly, if we perturb the ice sheet by making L slightly smaller, sea level at the

grounding line will be smaller than the value required to balance ice loss and accumulation, and
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the ice sheet will grow until it returns to its original configuration. Hence, this particular steady

state is stable. In contrast to this case, consider the steady state given by the red dot in Figure

4.1B. If the ice sheet grew by some incremental amount then sea level at the grounding line would

be smaller than the thickness needed to balance accumulation and ice loss and the ice sheet would

continue to grow instead of returning to its original configuration. Similarly, if the grounding line

were perturbed to a smaller value, the ice sheet would continue to shrink. Hence, this steady state

is considered unstable.

In general, if the slope of the curve describing sea level at the grounding line is greater than

the slope of GL2/9 at a point of intersection, the ice sheet is in stable steady state; the ice sheet is

unstable if the reverse is true. Whenever the initial bed slope, �, is less than or equal to zero, the

solution is unconditionally unstable, and a small retreat (advance) of the ice margin would lead

to greater mass loss (gain) across the grounding line than accumulation and thus further retreat

(advance). This result is the basis for Weertman [1974]’s conclusion that the model ice sheet is

inherently unstable when it rests on a bed that was flat or sloped downwards inland prior to loading.

One shortcoming of Weertman [1974]’s argument regarding stability is that it invokes a time-

dependent perturbation of the system within an otherwise steady state framework. For example,

the bedrock topography is assumed to be in hydrostatic equilibrium with the ice load, even when the

margin is advancing or retreating. Recent analyses have extended the Weertman [1974] treatment to

account for, among other features, non-steady state conditions [Schoof, 2007a,b; Katz and Worster,

2010]. These studies have concluded that the condition that an ice sheet on a reversed bed slope is

unstable applies to the observed, rather than the pre-loaded topography.

A second shortcoming of Weertman’s analysis is the assumption that sea level at the grounding

line remains constant as the size of the marine ice sheet is perturbed. Previous analyses have

considered the influence of a sea-level perturbation (dD) on ice-sheet stability by assuming a ge-

68



x
x=L

D(x)

Do h(x)
(x)

2/
9

`

0 2 4 6 8 10
0

100

200

300

400

500

600

700

L (102 km)

G
L2/

9 , `

stable

unstable

unstable

12

D
o

= 200m,� = 0

D
o

= 450m,� = 0

D
o

= 200m, � = 0.4 m/km

 L
 +

D
o  

(m
)

 

GL2/9

A

B

Figure 4.1: A summary of the Weertman analysis of ice-sheet stability. (A) Vertical cross section
through the two-dimensional, marine-based ice sheet considered by Weertman [1974]. The radial
dimension is denoted by x, where x = L is the grounding line. The ice sheet of thickness h(x) is in
isostatic equilibrium and sits on bedrock initially inclined with slope �, where positive � denotes
a bedrock depth that increases as one moves outward. D

o

denotes the pre-loaded depth of the
bedrock at the center of the ice sheet, and ↵ is the slope of the upper ice surface. (B) Plot of
solutions for grounding line position according to Weertman [1974]’s steady state marine ice-sheet
stability theory. The figure shows GL2/9 versus grounding line position L (black line) and �L+D

o

versus L for various D
o

and � values (red lines, as labelled). The intersections between the GL2/9

curve and the straight lines (denoted by red, green and blue circles and blue square) are solutions to
Equation (4.1) and they therefore represent possible steady state marine ice-sheet configurations.
The terms “stable” and “unstable” that appear on the figure are defined in the text.
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ographically uniform, or eustatic, change in sea level [Thomas and Bentley, 1978; Hindmarsh and

Le Meur, 2001; Schoof, 2007a; Wilchinsky, 2009]. Under this assumption, a decrease in ice mass,

with an associated change in L, leads to an increase in sea level at the grounding line (Figure 4.2A).

The assumption of eustasy is roughly consistent with Weertman’s assumption of hydrostatic equi-

librium in the sense that adjustments in ice mass over very long time scales will maintain isostatic

equilibrium and thus lead to sea-level changes that are nearly uniform geographically (in the absence

of a lithosphere that maintains elastic strength over very long periods). However, isostatic equilib-

rium will not be maintained for ice-mass changes over time scales ranging out to tens of millennia,

so that eustasy will generally be an inadequate description of changes in sea level, particularly near

the ice sheet itself.

Gravitationally self-consistent sea-level (GSCSL) changes following rapid melting of grounded

ice are, in fact, characterized by markedly non-uniform spatial patterns [Mitrovica et al., 2001; Plag

and Juettner, 2001; Gomez et al., 2010b, Chapter 2]. As discussed in Chapter 2, the departure from

eustasy is due to three e↵ects: (1) elastic deformation of the solid Earth in response to the load

redistribution, including a rebound of the solid Earth in the vicinity of the diminishing ice load;

(2) load self-gravitation, which primarily involves the migration of water away from the melting ice

sheet as its gravitational pull on the ocean weakens; and (3) the feedback of contemporaneous, load-

induced perturbations in the orientation of the Earth’s rotation vector onto sea level. A GSCSL

theory that combines these e↵ects [Gomez et al., 2010b; Kendall et al., 2005, Chapter 2] predicts

near-field sea-level changes in the opposite direction, and an order of magnitude larger, than would

be predicted assuming eustasy (see Figure 4.2A).

The GSCSL predictions presented below are computed using the sea-level equation and pseudo-

spectral algorithm given in Chapter 2 (Equations 2.21-2.23) [see also Mitrovica and Peltier, 1991;

Kendall et al., 2005; Gomez et al., 2010b], with truncation at spherical harmonic degree and order
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512. We use a version of the theory valid for a one-dimensional (depth varying), elastic Earth

model. The elastic and density structure of the Earth model is prescribed by the seismic model

PREM [Dziewonski and Anderson, 1981], with this structure embedded in the elastic Love numbers

discussed in Section 2.2.2.

Consider an ice sheet with initial length L
o

= 700 km that undergoes mass loss whose profile is

consistent with that assumed by Weertman [1974], i.e., maintaining a steady state surface profile.

In this case, each kilometre of inward migration of the grounding line is associated with 0.30 m

of sea-level fall (Figure 4.2A). More generally, the predicted GSCSL change at the grounding line

ranges from 0.20 to 0.34 m/km for grounding line positions L ranging from 265 km to 1400 km.

This relative insensitivity occurs because the ice loss is largest at the margins and tapers o↵ into

the ice sheet and because the computed sea-level change at the grounding line is progressively less

sensitive to ice-mass changes at greater distance.

This issue is explored in more detail in Figures 4.2B and 4.2C, which show the contribution to

the GSCSL change from ice-mass changes within successively broader sub-regions of the ice-sheet-

wide perturbation considered in Figure 4.2A. In Figure 4.2B, the sea-level change is plotted as a

function of the fractional extent of ice-mass changes, as measured from the initial grounding line

(see caption). As an example, in the case L
o

= 700 km, and mass changes confined to the outer

25% of the ice sheet, sea level changes by 0.24 m/km, or 80% of the ice-sheet-wide case. Figure 4.2C

accounts for tapering of the ice loss from the margin to the interior by plotting the sea-level change

as a function of the fractional cross-sectional area of the mass change, as measured from the initial

grounding line. In the L
o

= 700 km case, for example, the 0.25 fractional extent that yields a

sea-level change of 0.24 m/km corresponds to a fractional cross-sectional area of 0.5.

These sea-level results may be combined with the bed slope at the grounding line to compute

an e↵ective topographic slope. As an example, the grounding line of an ice sheet rapidly retreating
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Figure 4.2: Sea-level changes following grounding line migration. (A) Change in sea level at the
grounding line divided by the change in the grounding line position, i.e., dD/dL, plotted as a
function of the initial grounding line position L

o

. Green curve: A calculation which assumes a
geographically uniform (eustatic) meltwater redistribution. Blue curve: A gravitationally self-
consistent sea-level calculation (see text). These calculations assume that the ice sheet maintains
a steady state surface profile as the grounding line migrates. (B), (C) Contributions to the GSCSL
change (blue line) in (A), as a function of the fractional extent or fractional cross-sectional area,
respectively, of the total ice load change in frame (A). As an example, an x-axis value of 0.2 in
frame (B) means that only mass change within a distance from the grounding line that is 20% of
L
o

is included. An x-axis value of 0.2 in frame (C) means that only 20% of the total cross-sectional
area of melting in frame (A) that is closest to the grounding line is included.

72



on a flat bed will actually be subject to an e↵ective topographic slope of 0.3 m/km (up toward the

center of the ice sheet) if the retreat reflects an ice-sheet-wide mass loss (Figure 4.2; this e↵ective

slope is as a result of the elastic uplift of the solid Earth due to the (ice plus water) unloading and

the fall of the local sea surface arising from the associated loss in gravitational attraction. Both

processes act to stabilize the retreat of the grounding line.

Under what conditions would the sea-level feedback mechanism stabilize an ice sheet resting

on a reversed bed slope? A preliminary answer to this question is possible by replacing, as we

discussed above, the pre-loaded slope � in Equation (4.1) with the observed slope, which we denote

as �0, and by adding an expression for the change in sea level that accompanies migration of the

grounding line:

�0L + D
o

+ dD(L, dL) = GL2/9. (4.2)

Specifically, dD(L, dL) is the change in sea level due to a shift of the grounding line from L to a

new position, L + dL. For small changes in grounding line position, �L, away from some reference

value L
o

, we can rewrite the additional term as

dD(L
o

, �L) = �L
dD

dL

����
L=L

o

. (4.3)

We note that �0 + dD/dL represents the e↵ective topographic slope at L
o

, as defined above.

Figure 4.3 revisits the D
o

= 450 km, flat bed solution in Figure 4.1 (blue square) using the

extended stability Equation (4.2). Under the assumption that the migration of the grounding line

is accompanied by a eustatic sea-level change, the instability we previously noted in the context of

Figure 4.1 is exacerbated. (That is, the slope of the green line is even lower than the slope of the

black.) The inclusion of a eustatic sea-level change perturbs the marine ice sheet toward a more

unstable state. In contrast, if we incorporate a GSCSL change into the stability theory, a retreat
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Figure 4.3: Revised analysis of marine ice-sheet stability based on a theory (Equation 4.2) that
includes GSCSL change. The figure specifically considers the steady state, flat bed ice-sheet con-
figuration denoted by the blue square (D

o

= 450 km; L
o

⇠ 700 km) on Fig. 4.1B. The solid black
and dashed red lines are reproduced from that figure. The dashed green and blue lines represent
the total sea level at the grounding line computed by including either an ESL or GSCSL change
(see text), respectively, associated with a perturbation in ice-sheet size from the steady state con-
figuration (i.e., the left-hand-side of Equation 4.2). That is, we compute the term dD(L

o

, dL) as a
function of the change in the grounding line position, dL = L� L

o

, away from the value L
o

while
maintaining a steady state surface profile and add this to the red dashed line.

of the grounding line from the original steady state position (L
o

⇠ 700 km) will lead to a fall in sea

level at the grounding line, a reduction of the flux across the grounding line, and an advance of the

ice sheet back to its original configuration. The marine ice sheet will thus be stable. We conclude

that local sea-level change following rapid grounding line migration will contribute a stabilizing

influence on marine ice sheets, even when grounded upon beds of non-negligible reversed slopes,

i.e., �0 < 0.

In Figure 4.4, we use the results in Figure 4.2 to explore the impact of the sea-level stabilization

mechanism within a parameter space defined by ice sheet size, melt geometry and bed slope. The
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goal is to identify more generally the conditions under which sea-level change may be a significant

stabilizing factor for marine based ice sheets. We begin by defining the “critical bedslope” as the

bed slope at the grounding line for which an ice sheet transitions between stable and unstable

states. Figure 4.4A (black curve) plots the critical bed slope as a function of initial grounding line

position L
o

, determined from Weertman [1974]’s Equation (4.1). The curve indicates that positive

initial bed slopes can also be unstable; whereas horizontal or reverse initial bed slopes guarantee

instability regardless of the size of the ice sheet.

Next, we calculate the critical bedslope using Equation (4.2) by incorporating either the ESL

or GSCSL changes under the assumption that the ice-mass perturbation geometry maintains a

steady-state surface profile (as in Figure 4.2A). The former (green line) illustrates the moderate

destabilizing e↵ect of ESL changes. The latter demonstrates the stabilizing influence of the local

GSCSL changes that will accompany grounding line migration. Ice sheets with a spatial scale

greater than ⇠ 350 km can be stable over a range of negative bed slopes. As an example, in the

case of L
o

= 700 km, the critical bed slope is �0.15 m/km.

In Figs 4.4B and C we explore the contribution to the critical bed slope from ice-mass changes

within successively broader sub-regions of the ice-sheet-wide zone considered in Figure 4.4A; in

this case, we make use of the sea-level changes computed in Figs 4.2B and C. In Figure 4.4B, the

critical bed slope is plotted as a function of the fractional extent of ice-mass change, as measured

from the initial grounding line. As an example, in the case L
o

= 700 km, mass flux that occurs

within a zone that covers the outer 2% of the ice sheet length L
o

produces a sea-level change that

yields a critical bed slope of -0.1 m/km, or 65% of the ice-sheet-wide case. More generally, this

same fractional extent of melting yields a critical bed slope that is negative for any ice sheet of

spatial scale greater than ⇠ 500 km. In Figure 4.4C we plot the critical bed slope as a function

of the fractional cross sectional area of the mass change, as measured from the initial grounding
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Figure 4.4: Exploration of the parameter space governing sea-level stabilization of marine ice sheets.
(A) Predictions of the “critical bed slope” (see text) as a function of grounding line position L. The
black curve is computed on the basis of Equation (4.1). The green and blue curves are computed
using Equation (4.2), where the change in sea level dD is calculated assuming eustasy (i.e., ESL)
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be unstable. (B), (C) Contributions to the critical bed slope in (A), for a range of initial ice sheet
sizes, as a function of the fractional extent or fractional cross-sectional area, respectively, of the
ice-mass change zone.
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line. In the L
o

= 700 km case, for example, the 0.25 fractional extent that yields a critical bed

slope of �0.1 m/km corresponds to a fractional cross-sectional area of ⇠ 0.5. We conclude that the

stabilization may be important even in the case of relatively localized perturbations in ice mass.

Note that the ice-mass perturbation need not be instantaneous. Our predictions of GSCSL

change are based on elastic Earth models, and they are therefore accurate for mass changes inte-

grated over times scales up to ⇠ 300 � 500 years (the Earth’s Maxwell time). The issue of time

scale is also relevant to our neglect of sea-level variations due to (meltwater-induced) perturbations

in ocean dynamics. Global ocean simulations [Kopp et al., 2010] that include freshwater hosing

from Greenland into the North Atlantic suggest that static sea-level perturbations will dominate

dynamic e↵ects in most of the world ocean once melt volumes have reached ⇠ 20 cm of equivalent

ESL change. In the near-field of the ice sheet, where the GSCSL changes are largest, this dominance

will likely be established at much lower magnitudes of melt. We also note that changes in sea level

associated with freshening or warming could be largely compensated for by a decrease in flotation

thickness of the ice at the grounding line.

The large di↵erence in the near-field and far-field sea-level signal computed using a GSCSL

theory has implications for any potential teleconnection between ice sheets in opposite hemispheres.

As an example, melting from the Greenland Ice Sheet would lead to a sea-level rise at the WAIS

that is 15%-30% above the eustatic value associated with this mass loss, depending on the specific

location. If this local sea-level rise triggered an instability of roughly the same mass in the WAIS,

the local sea-level drop that results would be an order of magnitude larger than the initial sea-level

rise, and this di↵erence would preclude a runaway inter-hemispheric ice-sheet instability. However,

such inter-hemispheric teleconnections might not be precluded if meltwater volumes originating

from the far-field were much larger than the local melt loss triggered by the consequent sea-level

rise, as might have occurred during periods of the ice age (see Chapter 6 for an ice-age application
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of coupled ice sheet - sea level modeling).

The above results have highlighted the potential importance of the sea-level stabilization mech-

anism using a highly simplified model of marine ice-sheet stability based on Weertman [1974]. More

complete descriptions of grounding line dynamics and marine ice-sheet stability have been devel-

oped which include ice-shelf buttressing [Dupont, 2005; Goldberg et al., 2009], boundary layers to

model the ice sheet-ice shelf transition zone [Schoof, 2007a,b] and an extension to three dimensions

[Katz and Worster, 2010]. However, the GSCSL physics we have described is universal, and thus

it will be active regardless of the level of complexity in the ice-sheet stability theory. In this re-

gard, our results provide a framework for including the sea-level stabilization mechanism in more

realistic models (as described in the next two chapters of this thesis) and, in turn, should lead to

improved estimates of the stability and possible rates of change of marine-ice sheets such as the

West Antarctic Ice Sheet.
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Chapter 5

Evolution of a coupled marine ice sheet - sea level model

In this chapter, we investigate the stability of marine ice sheets by coupling a gravitationally

self-consistent sea-level model valid for a self-gravitating, viscoelastically deforming Earth to a

1-D marine ice sheet-shelf model. The evolution of the coupled model is explored for a suite of

simulations in which we vary the bed slope and the forcing that initiates retreat. We find that the

sea-level fall at the grounding line associated with a retreating ice sheet acts to slow the retreat;

in simulations with shallow reversed bed slopes and/or small external forcing, the drop in sea level

can be su�cient to halt the retreat. The rate of sea-level change at the grounding line has an

elastic component due to ongoing changes in ice-sheet geometry, and a viscous component due

to past ice and ocean load changes. When the ice-sheet model is forced from steady state, on

short timescales (<⇠ 500 years), viscous e↵ects may be ignored and grounding-line migration at a

given time will depend on the local bedrock topography and on contemporaneous sea-level changes

driven by ongoing ice-sheet mass flux. On longer timescales, an accurate assessment of the present

stability of a marine ice sheet requires knowledge of its past evolution.

A version of this chapter was published with David Pollard, Jerry X. Mitrovica, Peter Huybers and Peter U.
Clark in the journal Geophysical Research Letters Vol. 117, F01013, 2012.
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5.1 Introduction

The stability of polar ice sheets, and in particular that of the West Antarctic Ice Sheet (WAIS),

is of central concern within studies of modern climate change [Lenton et al., 2008; Smith et al.,

2009]. The WAIS is a marine-based ice sheet that interacts with the surrounding ocean. The

ice shelves that fringe the WAIS are known to have a stabilizing or buttressing e↵ect on the ice

sheet [Dupont, 2005; Goldberg et al., 2009; Thomas and Bentley, 1978], but these shelves appear

susceptible to climate change since warming of the atmosphere and/or ocean could lead to increased

melting and disintegration either from above and/or below, respectively [Jenkins and Doake, 1991;

MacAyeal et al., 2003; Rignot, 2002]. Indeed, collapse of ice shelves as well as thinning, retreat

and acceleration of outlet glaciers have recently been observed in various sectors of the WAIS [e.g.

Rignot, 2006; Shepherd, 2001; Thomas, 2004; Wingham et al., 2009].

Marine ice sheets gain mass by accumulation throughout their interior and they lose mass by

flux of ice across the grounding line into floating ice shelves. The grounding-line zone is located

where the ice changes from being thick enough to keep the base of the ice grounded on bedrock

below the local sea surface, to thin enough that the ice floats, dividing the floating ice shelves

from the grounded ice sheet. Ice thickness at the grounding line is approximately proportional to

the depth of water; in order for the ice sheet to come into equilibrium after an increase in water

depth requires the grounding line to shift toward a shallower location [Schoof, 2007a; Thomas

and Bentley, 1978; Weertman, 1974]. As discussed in Chapter 4, Weertman [1974] used a steady

state ice-sheet model to argue that marine ice sheets resting on reversed bed slopes (i.e., sloping

down toward the interior) are unstable and prone to rapid retreat [see also Thomas and Bentley,

1978]. This so-called Marine Ice Sheet Instability Hypothesis is based on the premise (supported by

analysis in the references above) that ice velocity across the grounding line depends very strongly

80



on grounding-line depth, so as the grounding line retreats into deeper water, the rapidly increasing

flux of ice across the grounding line causes drawdown of upstream grounded ice and an accelerating

grounding-line retreat. These conclusions have been supported by recent theoretical studies that

have extended these canonical analyses to include ice-shelf buttressing, boundary layers to model

the ice sheet/ice-shelf transition zone and an extension to three spatial dimensions [e.g., Dupont,

2005; Goldberg et al., 2009; Katz and Worster, 2010; Schoof, 2007a].

In general, investigations of marine ice-sheet stability have either ignored sea-level changes as-

sociated with ice-mass changes, or included them by assuming that such changes are geographically

uniform [Schoof, 2007a; Thomas and Bentley, 1978; Wilchinsky, 2009]. However, gravitationally

self-consistent predictions of sea-level change following the retreat or advance of grounded ice sheets

or glaciers are characterized by dramatically non-uniform geometries. In particular, in the vicinity

of a rapidly melting ice sheet (i.e., within 2000 km), sea level will fall as a consequence of in-

stantaneous gravitational and deformational e↵ects [Farrell and Clark, 1976; Gomez et al., 2010b;

Mitrovica et al., 2001, see Chapter 2]. These e↵ects also contribute to a geographically variable

pattern of sea-level rise predicted for sites at greater distances from the ice sheet. In Chapter 4, we

coupled predictions of this instantaneous sea-level fingerprint to the Weertman [1974] steady state

1-D ice-sheet model, and demonstrated that on a reversed bed, the sea-level fall resulting from ice

loss compensates for the deepening of the bed, and for some reversed bed slopes this compensation

is su�cient to stabilize the ice sheet.

The present analysis extends the analysis in Chapter 4 by rigorously introducing the dimension

of time, i.e., we move beyond simple descriptions of instability versus stability to assess the timescale

of retreat for a range of ice-sheet forcings. This analysis requires more complex sea-level and ice-

sheet models. The sea-level fingerprints used in Chapter 4 are valid for melting events with a

timescale less than the Maxwell time over which the solid Earth deforms elastically. However,
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large-scale changes in ice sheets can take place over several thousand years or longer. Recall from

Chapter 2 that on these timescales, the viscous response of the upper mantle and crust, which

will be a function of the entire pre-history of ice and ocean loading, can contribute significantly

to local changes in sea level. In this case, the elastic and viscous responses combine to produce,

for example, a localized zone of uplift on the solid Earth in the vicinity of a melting ice sheet

and a subsidence of surrounding forebulges as the system relaxes toward isostatic equilibrium. To

model such e↵ects, we adopt a gravitationally self-consistent sea-level model that accounts for the

deformation of a self-gravitating, viscoelastic Earth model [Kendall et al., 2005; Gomez et al.,

2010b]. In addition, the Weertman [1974] ice-sheet model considered only the stability of steady

state ice-sheet configurations. Here we employ a dynamic ice-sheet model [Pollard and DeConto,

2007, 2009] to investigate how sea-level changes influence the timescale and extent of retreat of a

marine ice sheet subject to a perturbation in climate.

5.2 Model Setup

5.2.1 Ice-Sheet Model

We adopt a 1-D, axisymmetric version of the ice sheet-shelf model described by Pollard and De-

Conto [2007, 2009]. In this type of model, long-term variations of ice thickness are stepped forward

in time, accounting for net horizontal advection by ice flow, annual accumulation minus ablation

on the ice surface, and any melting or freezing at the base. Our model heuristically combines

the scaled equations for grounded (shearing) flow and for floating or stream (stretching) flow. The

grounding-line zone acts as a boundary layer between the two flow regimes, and a recent parameter-

ization of ice velocity at the grounding line [Schoof, 2007a] captures the e↵ect of the grounding-line

zone on the large-scale flow in the model and avoids the need for very fine resolution to resolve

explicitly variations through the grounding-zone boundary layer. Following Schoof [2007a], this
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parameterization also incorporates buttressing of the upstream flow by ice shelves. In addition,

the model predicts ice thickness variations due to mass advection and surface mass balance. For

all runs here, ice temperatures and thermal e↵ects are not included, and ice rheology is uniform

with a Glen flow law exponent of 3 and a coe�cient of 2 ⇥ 10�16 Pa�3 a�1. Basal sliding occurs

wherever the ice is grounded. The sliding velocity is given by u
b

= B⌧2
b

, where ⌧
b

is basal shear

stress and B = 10�10 m a�1 Pa�2 is the sliding coe�cient. Unless otherwise specified, surface

accumulation everywhere is 0.1 m a�1 ice equivalent with no seasonal or interannual variability,

and there is no sub-ice shelf oceanic melting. At the most peripheral grid point (right-hand side of

the plots below), ice thickness is set to zero, which is equivalent to allowing free flow of ice out of

the model domain and has no upstream e↵ect. The interior edge of the domain (left-hand side of

the plots below) is a divide, i.e., where the ice elevation is maximum, and surface slope and ice flux

are zero; this is nominally the South Pole for the idealized model here, but would be the limit of

the catchment area for real glacier systems. The ice sheet domain is regularly gridded in latitude at

0.1 latitude (11 km) and irregularly gridded in the vertical into ten intervals, and the model time

step is 0.1 yr. Note that the results of experiments with twice the spatial resolution and shorter

time steps showed no significant di↵erences from the results presented here.

Floating ice shelves a↵ect upstream flow and grounding line migration by their back stress

(‘buttressing’) at the grounding line [e.g., Schoof, 2007a]. Back stress is caused by the ice shelf

moving past or abutting land or grounded ice (called “side drag” here), or by bedrock pinning points

impinging on its base. In their absence, a freely floating ice shelf would provide zero back stress at

the grounding line, and would have no dynamical e↵ect on grounding-line position or on upstream

grounded flow if it were to break up entirely; conversely, breakup of a previously buttressing ice shelf

can cause dramatic upstream acceleration, drawdown of grounded ice, and grounding-line retreat

[Scambos et al., 2004; Schoof, 2007a]. To include buttressing e↵ects in idealized 1-D flow line
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studies, side drag or pinning points must be parameterized [Dupont, 2005; Gagliardini et al., 2010;

Goldberg et al., 2009]. Here, a retarding stress per unit horizontal area is applied in the momentum

equation where ice is floating, proportional to ice thickness and velocity, and independent of flow

band width [similar to Gagliardini et al., 2010]:

SD = Ku
a

h, (5.1)

where SD is the retarding stress (in units of N m�2), K is a coe�cient with nominal value

3 ⇥ 10�4 N a m�4, u
a

is ice-shelf horizontal velocity (in m a�1), and h is ice-shelf thickness

(in m). This simple parameterization can be considered to represent either side drag or pinning

points equally well; in reality, both probably depend on ice thickness and velocity with at least the

same sign as in equation (5.1) (but note that we use the phrase “side drag” for brevity throughout

this paper). The nominal magnitude of K is selected to produce reasonable pre-perturbation states

in the flow line model; a more realistic prediction will require 3-D modeling with explicit side-shear

geometry and pinning-point bathymetry.

5.2.2 Sea-Level Model

We adopt the generalized, gravitationally self-consistent sea-level theory described in detail by

Kendall et al. [2005] and Gomez et al. [2010b], and reviewed in Chapter 2. In particular, we use the

version of this theory valid for a spherically symmetric, self-gravitating, Maxwell viscoelastic Earth

model (here called the GSCVE sea-level theory). As in Chapters 2 and 4, the depth-dependent

variations in the elastic and density structure in the Earth model are given by the seismic model

PREM [Dziewonski and Anderson, 1981] and the viscosity structure is characterized by an infinite

viscosity (i.e., elastic) lithosphere of thickness 120 km, an upper mantle viscosity of 5 ⇥ 1020 Pa s

and a lower mantle viscosity of 5 ⇥ 1021 Pa s [Lambeck et al., 1998; Mitrovica and Forte, 2004].
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Figure 5.1: Schematic illustrating the initial steady state model configuration. (A) The axisym-
metric configuration of the model Earth, which includes an ocean covering 70% of the surface area
of the Earth (blue), a spherical cap continent at the North Pole (green), and a circular disk ice
sheet on the South Pole (white). (B) Cross section of the ice sheet in Figure 5.1a. The blue lines
represent the elevation of the surface of the ice and the bottom of the ice shelf. The solid black
line represents the elevation of the bedrock and the dashed black line at zero elevation represents
the sea surface. The ice sheet’s grounding line, corresponding to the junction of the solid blue and
black lines, is initially located just outside of a region where the bed slopes down to the center of
the ice sheet with slope �.
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Recall from Chapter 2 that the GSCVE sea-level model accounts for the exchange of mass between

grounded ice and ocean and incorporates time-dependent shoreline migration, allowing for the

inundation of water into areas freed of marine-based ice. Since the model is gravitationally self-

consistent, deformation of the solid surface and the sea surface equipotential are coupled, i.e.,

deformation of the solid Earth alters the gravitational field and thus perturbs the sea surface. The

latter impacts the distribution of water in the model, and this redistribution will, in turn, deform

the solid Earth.

Figure 5.1A shows the axisymmetric continent configuration adopted in our model. It is com-

prised of two regions: a continent with bedrock below the sea surface at the South Pole on which

the ice sheet sits (see discussion of Figure 5.1B below) and a spherical cap continent centered at

the North Pole with elevation above the sea surface elevation. The area of the latter is chosen

such that 70% of the surface area of the Earth is covered by ocean and ice shelves in the initial

configuration of the Antarctic Ice Sheet model. The initial state of the ice, bedrock and ocean is

assumed to be in isostatic equilibrium, and the sea-level model predicts changes from this state

as the ice sheet evolves, as described in Section 5.2.3. Sea-level calculations are performed with a

truncation at spherical harmonic degree 512 (i.e., a spatial resolution of 40 km).

5.2.3 Ice Sheet - Sea Level Coupling

We perform a two-way coupling between the ice-sheet and sea-level models described above. Pre-

dictions of current sea level in the model are used to update bedrock topography in the ice-sheet

model. Conversely, predictions of ice geometry in the ice-sheet model are used to specify ice loading

in the sea-level model. In the simulations described below, the ice-sheet model is run continuously

for 10, 000 years. Every 50 years, the current ice geometry is passed to the sea-level model, which

computes the sea-level change (or equivalently, the negative of the bedrock elevation change) over
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the last 50-year interval. The current sea-level field is updated accordingly and passed back to the

ice-sheet model. Passed fields are linearly interpolated in latitude between the two model grids.

Note that we also ran a series of simulations with shorter coupling time intervals and these results

showed no significant di↵erences from the simulations shown here using a 50 year interval.

As discussed above, the change in the current sea level computed by the GSCVE sea-level model

is a combination of (1) an instantaneous elastic deformation of the solid Earth and perturbation

to the sea surface equipotential driven by contemporaneous ice and ocean load changes and (2) a

delayed viscous response of the solid Earth (and associated gravitational e↵ects) that depends on

the entire history of ice and ocean loading. In order to model the viscous response, the GSCVE

sea-level model stores the entire sequence of 50-year-interval ice geometries from the start of the

run, and uses them to compute the current sea level each time it is called. A critical quantity that

we must track for the purpose of coupling the sea level and ice-sheet models is the distance between

the surface that the ice rests upon and the gravitational equipotential that defines the sea surface.

This distance governs the buoyancy of grounded ice. We specify the equipotential sea surface as

zero elevation in the ice-sheet model, and in this reference frame changes in bedrock elevation are

equivalent to the negative of changes in sea level. This relationship permits a simple coupling of

the two models.

As noted above, the ice-sheet model domain is axisymmetric in longitude, with only one grid

cell in the east-west direction. Within the ice-sheet model, the longitudinal arc-width of the flow

band is arbitrary. The arc-width is specified as 360 for coupling to the sea-level model, which

is global in extent and axisymmetric, i.e., as shown in Figure 5.1A. Chapter 6 will address more

realistic geometries associated with specific Antarctic sectors.
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5.3 Experiments

In this section, we consider the impact of the sea-level coupling on the ice sheet response to a

prescribed external forcing for a range of parameter choices and timescales. The ice-sheet model is

initially run to the steady state configuration illustrated in Figure 5.1B. The ice sheet’s grounding

line is initially located 10 km outside a region where the bed inclines down to the center of the ice

sheet with slope �.

In many of the experiments below, the external forcing is a reduction in ice-shelf buttressing,

imposed by reducing the side-drag coe�cient K in equation (5.1). The model would also respond

similarly if, for instance, sub-ice-shelf oceanic melt rates (zero in all experiments here) were in-

creased, which would thin the ice shelf and reduce side drag through the term h in equation (5.1).

However, in line with the idealized geometry and to simplify the interpretation of results, we have

chosen to reduce K directly. Actual reductions of buttressing in real Antarctic ice shelves stem-

ming from atmospheric and oceanic forcing are deferred to future 3-D modeling. In the first set of

experiments (Figure 5.2),the side-drag coe�cient K is instantaneously reduced at time t = 0 from

its nominal value, which increases the flux of ice across the grounding line, causing the grounding

line to retreat onto the reversed bed slope. As an example, Figure 5.2A shows the evolution of the

ice sheet along a reversed bed slope of � = 0.7 m/km following a reduction in K to 2/3 its nominal

value. In this example, the positions of the bedrock and sea-surface equipotential stay constant

(i.e., the sea-level coupling is not included). Once the grounding line reaches the reversed slope, a

small additional retreat moves the grounding line into deeper water, leading to a greater ice loss

across the grounding line and further retreat. As a consequence, the ice sheet retreats down the

slope until it disappears. The full retreat takes approximately 4000 model years.

Next, we explore the implications for this particular scenario of adding the sea-level coupling
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to the ice-sheet model (Figure 5.2B). In this case, as the ice sheet retreats, sea level falls, or

equivalently, the bedrock elevation relative to the sea-surface height increases (the black line in

Figure 5.2B deforms upwards). Thus, the water level is shallower at the new grounding line than

predicted in the simulation where sea level remained fixed (Figure 5.2A). The rate of ice loss across

the grounding line is slower than in the fixed-bed case and the retreat is slowed. The ice sheet

takes 7300 years to disappear, or 1.8 times longer than predicted in Figure 5.2A.

Figure 5.2C shows the sea-level change relative to the initial steady state (i.e., relative to the

horizontal line) at each time step of the ice-sheet evolution plotted in Figure 5.2B. As described

above, the sea-level changes are applied as a perturbation to the bedrock topography in Figure

5.2B. Elastic e↵ects dominate the sea-level change 1000 years into the evolution. As the ice sheet

loses mass over this time interval, the gravitational attraction it exerts on the surrounding water

weakens and, in response, water migrates away. In addition, the solid Earth in the vicinity of

the ice loss and water out-flux rebounds elastically. Both of these e↵ects contribute to the sea-

level fall predicted by the GSCVE sea level model at the grounding line [Gomez et al., 2010a].

In subsequent time steps, the viscous e↵ects also act to raise the bedrock at the grounding line,

thus elastic and viscous e↵ects combine to produce a further decrease in sea level. Note that since

gravitational and deformation e↵ects are coupled (see Section 6.2.2), raising the solid surface toward

isostatic equilibrium counters the direct gravitational e↵ect of ice loss (i.e., the net negative mass

anomaly created by past ice loss and solid Earth deformation tends to zero as the solid surface

rebounds toward isostatic equilibrium). However, this signal is swamped by deformation driven by

the ongoing ice mass loss. Within a given time interval, the fall in sea level is greatest in the region

across which the grounding line migrates (i.e., the maximum drop in the sea-level curves in Figure

5.2C are located near the corresponding grounding line location in Figure 5.2B).

When the external forcing imposed through a reduction in the side drag coe�cient and/or the
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Figure 5.2: The evolution of the ice sheet shown in Figure 5.1B following a reduction in the side-drag
coe�cient to 2/3 its nominal value. Ice and bedrock elevation contours are plotted every 1000 years,
and the ice contours move from dark to light blue as time increases. (A and B) The retreat along
a reversed bed of slope 0.7 m/km in the fixed topography (Figure 5.2A) and topography that is
updated by the sea-level model every 50 years (Figure 5.2B). (C) sea-level change in the scenario
of Figure 5.2B relative to the initial steady state, plotted every 1000 years. (D-F) Analogous to
Figures 5.2A -5.2C for retreat along a bed slope of 0.3 m/km.
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reversed bed slope are su�ciently small, the fall in sea level that accompanies ice-sheet retreat will

be large enough that the ice sheet stabilizes to a new steady state. An illustrative scenario is shown

in Figures 5.2D-5.2F for the case of an ice sheet resting on a bed slope that is initially 0.3 m/km,

which is less steep than the value adopted in Figures 5.2A-5.2C (0.7 m/km). In Figure 5.2D, the

bedrock and sea-surface elevations are held constant and the ice sheet disappears in 7200 years. In

contrast, when the sea-level coupling is included in Figure 5.2E, the sea level fall (Figure 5.2F) is

su�cient to halt the ice-sheet retreat. The ice sheet reaches a new equilibrium with the grounding

line located 200 km inland of its initial position. Note from Figure 5.2F that as the ice sheet

reaches a new equilibrium, ongoing viscous deformation toward isostatic equilibrium causes sea

level to continue to fall. This residual sea-level change further stabilizes the ice sheet and may lead

to a future re-advance.

5.3.1 Bed Slope and Forcing Parameters

In this section, we discuss results of sensitivity analyses that vary several key aspects of the ice-

sheet model. To begin, we investigate further the influence of changing the bed slope adopted in

the initial steady state configuration of the model. In Figure 5.3A, we initiate ice-sheet retreat with

a fixed, 60% reduction in the side-drag coe�cient, and track the location of the grounding line as

a function of time for simulations with a range of initially reversed bed slopes. The green lines are

results of simulations in which sea level is fixed (i.e., as in Figures 5.2A and 5.2D) while the blue

lines plot the grounding-line position when sea-level changes are coupled with the ice-sheet model

(as in Figures 5.2B and 5.2E). In all cases where sea level is fixed, the grounding line retreats down

the reversed slope until the ice sheet completely disappears, and the time scale of collapse increases

with progressively shallower slopes. Once again, the inclusion of the sea-level coupling acts to slow

the rate of retreat. For initial bed profiles that are horizontal or have a relatively shallow slope
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Figure 5.3: Grounding-line position as a function of time for (A) ice-sheet retreat initiated by a fixed
60% reduction in the side-drag coe�cient, K, down a range of reversed bed slopes of magnitude 0.0
to 1.0 m/km (as labeled). (B) As in Figure 5.3A except for reductions in the side-drag coe�cient
within the range 20%-80% of the nominal value and a fixed bed slope of 0.3 m/km. (C) As in
Figure 5.3B, except that the side-drag coe�cient is fixed and retreat is instead initiated by a
reduction in the accumulation rate, b, of 20%-80% of the nominal rate of 0.1 m a �1. The green
lines are results when sea-level change is not coupled into the ice-sheet model, whereas the blue
lines include this coupling.

(� = 0.3 m/km), the sea-level fall at the grounding line is ultimately su�cient to halt the retreat

and the ice sheets reach a new steady state 200 km and 300 km inward, respectively, of the original

grounding line.

Next,we consider the e↵ect of varying the strength of the forcing that is applied to initiate the

retreat. Figure 5.3B plots the grounding-line position as a function of time for simulations on a
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reversed bed slope of 0.3 m/km and a range of reductions in the ice-shelf side-drag coe�cient K in

equation (5.1). In the case where sea level is fixed, the speed of grounding-line retreat increases with

greater reductions in K, and thus the time scale for complete collapse decreases. The inclusion of the

sea-level coupling once again acts either to halt (Figure 5.3B, with a 20%, 40%, or 60% reduction

in K) or slow down (by a factor of 2 with an 80% reduction in K ) the retreat.

In addition to driving retreat by reducing the side-drag coe�cient, we also initiated ice-sheet

retreat by reducing the rate of accumulation. The results presented in Figure 5.3C show similar

trends to those evident in Figure 5.3B except that the ice sheet responds less strongly to accu-

mulation changes than to the same percentage change in the side-drag coe�cient. In addition, in

order to initiate retreat onto the reversed slope, these simulations prescribe rates of accumulation

that are lower than the range expected over the Antarctic Ice Sheet. This di↵erence in response

is not surprising since marine ice in the Antarctic is generally more sensitive to changes in ocean

temperature than to changes in accumulation rates and surface melting [Jenkins and Doake, 1991;

MacAyeal et al., 2003; Rignot, 2002]. Thus, reducing the ice-shelf buttressing e↵ect (through a

reduction in side drag) is a more e↵ective way of initiating retreat than altering accumulation

rates.

Finally, in Figure 5.4 we summarize a large sequence of results based on simulations with a

range of external forcing and bed slope combinations. In particular, Figure 5.4A plots the ratio of

the time taken for the grounding line to retreat 200 km in simulations based on the coupled ice

sheet-sea level model relative to simulations in which sea level is fixed in time. Figure 5.4B shows

analogous results for a grounding line retreat of 500 km, i.e., the contours in Figure 5.4 represent

the multiplicative factor by which the time scale of retreat is extended as a consequence of the

inclusion of the GSCVE sea-level model. In some simulations the grounding line does not retreat

by the target distance within the 10,000 year model run either because a new steady state is reached
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(indicated by light gray contours) or because the retreat velocity is too small (dark gray contour).

As an example, if the side-drag coe�cient is reduced by half its nominal value on a reversed bed

slope of 0.7 m/km, the inclusion of the sea-level feedback in the ice-sheet model extends the time

scale by a factor of 1.3 for a 200 km retreat and by a factor of 1.6 for a 500 km retreat. The sea-level

feedback has greater influence on the ice sheet’s stability for the case of the 500 km retreat, rather

than the 200 km retreat. The reason is that the former level of retreat involves more ice loss and

is achieved over a longer time scale than the latter; therefore, the net sea-level fall predicted by

the GSCVE sea-level model at the grounding line, which acts to compensate for the reversed bed

slope, is greater.

5.3.2 Elastic and Viscous Effects

As we discussed earlier in this chapter and in more detail in Section 2.4, the sea-level change at a

given time in the evolution of the ice sheet is due to both an instantaneous elastic signal associated

with ongoing ice and ocean load changes and a viscous signal that depends on the complete time

history of loading changes. Figure 5.5 explores the relative contribution of these signals to the

computed ice-sheet evolution for three di↵erent values of the initial bed slope ranging from 0.3

to 0.7 m/km. In all cases, ice-sheet retreat is initiated through a 60% reduction in the ice-shelf

side-drag coe�cient. The green line in each frame represents the case where sea-level changes are

not incorporated into the ice-sheet model, and the blue and red lines are the results of simulations

that incorporate sea-level changes either predicted by the GSCVE sea-level model or a special case

of this sea-level model that only includes an elastically deforming Earth model, respectively. In

the first 500 years of the simulation (i.e., less than or comparable to the Earth’s Maxwell time),

the stabilization associated with the sea-level feedback is the same whether the sea-level solver

adopts an elastic or viscoelastic Earth rheology. On longer timescales, these two cases diverge as
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Figure 5.4: The ratio of the time scale of ice-sheet retreat including sea-level change coupling to
the case without this coupling. Results are contoured as a function of bed slope and the percent
reduction in side-drag coe�cient K, where the latter is used to initiate retreat. The frames refer
to time scales required for a retreat of either (A) 200 km or (B) 500 km and a total simulation
time of 10, 000 years. The gray contours represent simulations in which the coupled model does not
retreat to the target distance within the 10, 000 year simulation time, either because the retreat is
too slow (dark gray) or the system reaches a new equilibrium (light gray).
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Figure 5.5: Grounding-line position of the ice-sheet model as a function of time, in cases where
sea level is not included in the model ice-sheet evolution (green); or where the ice-sheet model
incorporates sea-level changes computed using either the full viscoelastic Earth response (blue), or
the elastic response alone (red). Results are shown for a range of reversed bed slopes, as labeled
on each frame, and in all cases retreat is initiated by a 60% reduction in the side-drag coe�cient.

the ongoing viscous e↵ects from past ice and ocean load changes become important. The elastic

component of sea-level change is an important stabilization mechanism throughout the evolution

of the ice sheet, and this importance relative to the full viscoelastic case is proportionately greater

as the rate of retreat increases or, equivalently, the amplitude of the reversed bed slope increases

(Figure 5.5).

5.3.3 Conclusions

Accurate prediction of global sea level requires knowledge of the evolution of marine ice sheets,

and it appears that local changes in sea level can have a first order influence upon the rate of

mass loss that marine ice sheets undergo and the equilibrium states that they may attain. In

Chapter 4, we considered the influence of sea-level changes on the stability of marine ice sheets by

coupling the steady state ice-sheet model of Weertman [1974] to a sea-level model that adopted an

elastically deforming Earth model . While the study highlighted the potential importance of the

sea-level feedback, it was inadequate for the purposes of exploring the influence of this stabilization
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mechanism on the timescale of ice-sheet retreat.

Here, we coupled a gravitationally self-consistent sea-level model that incorporates viscoelastic

deformation of the Earth [Gomez et al., 2010b; Kendall et al., 2005, Chapter 2] to a more realistic,

time-evolving marine ice sheet-shelf model [Pollard and DeConto, 2007, 2009] and considered the

timescale of retreat under a large suite of simulations in which the external forcing, bed slope, and

sea-level feedback were varied. Our results demonstrate that the sea-level fall associated with a

retreating ice sheet will slow down and, in the case of shallow reversed bed slopes and/or small

external forcing, may even halt the retreat (see Figure 5.4). Therefore, the stability and motion of

the grounding line will depend not only on the local bed slope but also on the magnitude and rate of

local sea-level change. Changes in local sea level depend upon redistribution of ice mass and both

elastic and viscous deformations of the solid Earth, where determining the viscous deformation

requires accounting for the full history of ice and ocean loading. In the case of a steady state

ice sheet entering into a rapid retreat, viscous e↵ects can be largely neglected for the first several

centuries.

We have focused here on ice sheet-wide changes in mass, taking place on millennial timescales.

Of course, localized mass loss can occur on shorter timescales. For a given mass loss, the local sea-

level fall associated with rapid melting will increase as the spatial scale decreases. However, given

the existence of an elastic lithosphere, the contribution from deformational e↵ects will generally

decrease as the spatial scale of the localized melting is reduced. Thus, the influence of sea-level

stabilization in the case of century scale and localized melting is worthy of future, detailed study.

Our predictions have been based on a 1-D ice-sheet model with a simplified bedrock geometry.

In future work, we will consider other factors that influence the evolution of the grounding line, such

as lateral stresses, non-uniform bedrock gradients and variable basal conditions. Grounding-line

migration in the ice-sheet model we have adopted depends on the Schoof [2007a] flux parameteriza-
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tion, and this should be tested using higher-resolution and higher-order ice-sheet models. We also

plan to investigate the adequacy of linear or bilinear spatial interpolation in passing fields between

the sea level and the ice-sheet models. More generally, it will be important to assess the extent to

which the sea-level stabilization mechanism discussed herein remains important in the context of

more realistic treatments of marine-based outlet glaciers and tidewater glacier environments. We

also plan to extend the coupled model to consider the evolution of ice sheets throughout glacial

cycles, and in particular since the Last Glacial Maximum. This application may be used, for ex-

ample, to investigate inter-hemispheric teleconnections between ice sheets [Denton et al., 1986], the

timing of ice sheet growth and collapse, and the potential for the sea-level mechanism to stabilize

the West Antarctic Ice Sheet during interglaciations and terminations.
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Chapter 6

A 3-D coupled ice sheet - sea level model applied to

Antarctica through the last 40 ky

In this chapter, we present results from a three-dimensional ice sheet-shelf model of Antarctica,

coupled to a gravitationally self-consistent global sea-level model that incorporates (Maxwell) vis-

coelastic deformation of the solid Earth. The coupled model captures complex post-glacial changes

in sea level associated with the gravitational, deformational and rotational e↵ects of the evolv-

ing surface mass (ice plus ocean) load over the global ocean, including at the grounding lines of

marine-based ice. The simulations are initiated at 40 ka and we focus on ice distributions and

sea levels from the Last Glacial Maximum to present. Our results extend and confirm the key

conclusions of our earlier work using a simplified, 1-D ice-sheet model, by demonstrating that the

sea-level coupling has a significant stabilizing influence on marine ice-sheet grounding lines. The

feedback of sea-level changes into the ice-sheet model acts to slow down the retreat and advance of

the grounding line relative to simulations in which the full coupling is not incorporated. Di↵erences

in ice thickness between these simulations can reach ⇠1 km close to the grounding line. Finally,

we perform preliminary comparisons of our results to relative sea level (RSL) histories and GPS-

derived present-day uplift rates at sites near the margins of Antarctica. We find that the coupling

A version of this chapter was published with David Pollard and Jerry X. Mitrovica in the journal Earth and
Planetary Science Letters, vol. 384, pp. 88-99, 2013.
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improves fits to uplift rates in several regions, and that the RSL predictions of the coupled model

yield a fit to the observations that is comparable to recent, uncoupled simulations in which the

underlying Earth model was varied to obtain a best-fit to the RSL histories.

6.1 Introduction

Under the backdrop of a progressively warming world, there has been a renewed and comprehensive

e↵ort to improve our understanding of the key processes that drove the evolution of the Antarctic

Ice Sheet (AIS) from ice age conditions to the present day. This e↵ort has been supported by a

broad and growing suite of observational constraints, which include geological records of variations

in grounding-line position, ice-sheet surface elevation and relative sea level [see Briggs et al., 2013;

Briggs and Tarasov, 2013; Whitehouse et al., 2012a,b, for recent compilations], as well as land and

space based measurements of ongoing regional gravity changes [e.g., Velicogna, 2006; King et al.,

2013], crustal deformation [e.g. Thomas et al., 2011] and ice outflux velocity [e.g., Larour et al.,

2005].

This database has been complemented by ice-sheet modeling studies that have investigated

changes in AIS volume over a wide range of time intervals. As an example, Pollard and DeConto

[2009] used a combined ice sheet - ice shelf model to track the evolution of the AIS over the past

5 Ma. Their simulation captured trends in both the time scale of ice age cyclicity and the relative

duration of glacial and interglacial states inferred from sedimentary records [Naish et al., 2009].

Recently, Whitehouse et al. [2012a] and Briggs et al. [2013] have used numerical ice-sheet models

tuned to fit a wide suite of geological and glaciological constraints on AIS extent and thickness,

focusing on the history since the Last Glacial Maximum (LGM). Whitehouse et al. [2012a] adopted

this history in a model of glacial isostatic adjustment (GIA) to derive a preferred mantle viscosity

profile on the basis of fit to relative sea-level (RSL) histories and present-day uplift rates. King

100



et al. [2013], in concert with Shepherd et al. [2012]’s mass balance inter-comparison e↵ort, used

the latter models to correct GRACE gravity data for GIA and concluded that ongoing mass loss

from the AIS is a factor of 2-3 smaller than previous estimates. This is consistent with an earlier

estimate based on present-day crustal uplift rates from the Antarctic [Thomas et al., 2011] and a

GIA correction to GRACE gravity data based on an independent reconstruction of the post-LGM

AIS history [Ivins et al., 2013].

One of the main challenges in modeling the evolution of the AIS is accurately capturing the

dynamics of the grounding line in marine sectors of the ice sheet. These sectors, which rest on

bedrock that lies below the local height of the sea surface, gain mass through surface accumulation,

flow outwards and lose about the equivalent amount of mass via flux across the grounding line into

floating ice shelves. As discussed in Chapter 5, this mass flux is highly sensitive to the thickness of

ice at the grounding line, which is, in turn, proportional to the local water depth. Thus, a feedback

is thought to be active in these regions: If the ice-sheet grounding line retreats into deeper water

in the presence of reverse bed slopes, the loss of ice across the grounding line increases, leading

to further retreat. Conversely, if the ice-sheet grounding line advances into shallower water, flux

of ice across the grounding line decreases and the grounding line continues to advance. Weertman

[1974] first proposed this feedback, now known as the marine ice sheet instability hypothesis, using

a simple, 1-D marine ice-sheet model in steady state, and his now-classic conclusion has been shown

to hold in subsequent studies using more detailed numerical models [e.g., Dupont, 2005; Schoof,

2007a; Goldberg et al., 2009; Katz and Worster, 2010; Gudmundsson et al., 2012; Gudmundsson,

2013].

Since the flux of ice across the grounding line is sensitive to the water depth, accurately modeling

the dynamics of the grounding line requires a physical model of sea-level change at these locations.

Weertman [1974] did not consider sea-level changes, while more recent analyses of marine ice-sheet
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dynamics [Thomas and Bentley, 1978; Schoof, 2007a; Wilchinsky, 2009] have assumed that ice-mass

changes are accompanied by a globally uniform sea-surface height change. The numerical ice-sheet

models for the AIS described above [Pollard and DeConto, 2009; Whitehouse et al., 2012a] were

performed using various approximate numerical treatments of sea-level change at the grounding

line. The Pollard and DeConto [2009] ice-sheet simulation, for example, used a simple model of

post-glacial bedrock uplift, together with eustatic sea-surface height change inferred from oxygen

isotope records, to define sea-level change at the grounding line. Whitehouse et al. [2012a] adopted

a similar treatment of bedrock uplift, but their sea-surface height changes were adopted from a

temporally coarse discretization of a GIA calculation based on an independently derived ice history

and Earth model [Peltier, 2004]. Several studies including Whitehouse et al. [2012b], Briggs et al.

[2013] and Stocchi et al. [2013] have used GIA models that include gravitational sea-level physics,

but driven by Antarctic ice histories from previous runs of independent ice-sheet models.

In Chapters 4 and 5, we showed that a self-consistent coupling between ice-sheet and sea-level

models - that is, a coupling that incorporates sea-level changes computed using the modeled ice-

sheet evolution - can have a profound influence on the dynamics of a marine ice sheet [Gomez et al.,

2010a, 2012]. This work suggests that previous, approximate treatments of sea-level change in the

vicinity of the ice-sheet grounding line may introduce significant inaccuracies into the computed

ice-sheet evolution.

As discussed in Chapter 2, gravitational, deformational and rotational e↵ects associated with

changes in the distribution of grounded ice lead to markedly non-uniform spatial patterns of sea-

level change, and sea level will fall in the vicinity of a rapidly retreating ice sheet and it will rise

in the vicinity of a rapidly advancing ice sheet. In Chapter 4, we extended Weertman [1974]’s

equilibrium ice-sheet stability model to include gravitationally self-consistent sea-level change, and

demonstrated that the sea-level e↵ect provides a feedback that partially counteracts the marine
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instability of a reversed bed slope[Gomez et al., 2010a]. In Chapter 5, we extended this work using

a 1-D dynamic ice-sheet model with simplified geometry to show that the sea-level coupling tends

to slow down and, in some cases, halt grounding-line migration. These results highlighted the two

components of sea-level change that accompany grounding line migration: (1) An instantaneous

change associated with gravitational e↵ects and elastic deformation of the Earth due to the ongoing

changes in ice-sheet geometry; and (2) a longer timescale sea-level signal associated with viscous

deformation of the Earth due to the full history of ice and ocean load changes. Both of these

components of post-glacial sea-level change will be important in accurately modeling the stability

and evolution of the Antarctic Ice Sheet during the last glacial cycle and into the future.

In this study, we extend the coupled ice sheet - sea level model in Chapter 5 to three spatial

dimensions in the ice-sheet model to consider more realistic ice sheet and bedrock configurations.

As a first application of the coupled (3-D) model, we investigate the evolution of the AIS under

realistic climate forcings over the last 40 ky. A central aim of this chapter is to demonstrate the

e↵ects of coupling marine ice-sheet and sea-level changes relative to previous approximations for

the treatment of sea level in ice sheet models. Our results show that these e↵ects are significant

and highlight the importance of self-consistent coupling in future work.

We begin in Section 6.2 by describing the coupled ice sheet - sea level model. In Section

6.3.1, we present results of simulations using the coupled model, and compare these results to

simulations in which the sea-level coupling is not included. The contributions to the ice-sheet

evolution from various physical e↵ects (bedrock uplift, sea-surface fluctuations) associated with the

sea-level coupling are also considered in Section 6.3.1. In Section 6.4 we perform a preliminary

comparison of our results to available RSL histories and present-day GPS uplift rates. Conclusions

are provided in Section 6.5.
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6.2 Model Setup

In this section we outline the method by which we fully couple a 3-D Antarctic Ice Sheet-Shelf

model and a global model of static post-glacial sea-level change. The details of the models for both

ice-sheet evolution and sea-level change have been described in detail elsewhere [e.g., Pollard and

DeConto, 2012b; Kendall et al., 2005]. Nevertheless, we will summarize the major elements of these

models here, with a particular emphasis on the details of the coupling procedure.

6.2.1 Ice-Sheet Model

We adopt the hybrid ice sheet-shelf model described in detail in Pollard and DeConto [2012b],

and applied in Pollard and DeConto [2009, 2012a]. The treatment of ice dynamics is a heuristic

combination of the scaled Shallow Ice Approximation (SIA) and Shallow Shelf Approximation (SSA)

equations for shearing and longitudinal stretching flow, respectively. The relative contributions of

SSA and SIA flow at each point are not prescribed or parameterized, but arise from the model’s

iterative flow solution (except at points with sti↵ beds, much sti↵er than in grounded streaming

regions, where SSA flow would be negligible and is neglected for computational e�ciency). A

parameterization relating ice velocity across the grounding line to local ice thickness [Schoof, 2007a]

is imposed as an internal boundary-layer condition, so that grounding-line migration is simulated

accurately without the need for very fine (⇠100 m) resolution [Schoof, 2007a; Gladstone et al.,

2013; Pattyn et al., 2012]. These two measures are necessary to make the long integrations of this

study computationally feasible. The model performs reasonably well in idealized inter-comparisons

[Pattyn et al., 2012, 2013], although with somewhat larger di↵erences on smaller space and time

scales [Drouet et al., 2013; Pattyn and Durand, 2013].

The ice-sheet model includes a simple treatment of the response of the bedrock to evolving ice

and ocean loads. Deformation of the Earth is calculated as a point-by-point, time-lagged astheno-
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spheric relaxation towards isostatic equilibrium and incorporates a modulation of the response by

an elastic lithosphere. This treatment of bedrock deformation has been used in previous appli-

cations [Pollard and DeConto, 2009, 2012a]. Here, it is used only in runs labeled “uncoupled”,

to distinguish from coupled runs using the new Earth/sea-level model. Compared to the new

Earth/sea-level model, the old bedrock treatment has several limitations. First, it includes uniform

rather than gravitationally self-consistent ocean load and sea-surface height changes. Second, it

models the bedrock response at all spatial scales with a single, a priori prescribed decay time (3 ky),

and it does not capture the full, multi-normal mode response of complex viscoelastic Earth models

[Peltier, 2004]. The latter incorporates a family of viscoelastic relaxation modes, with decay times

that vary across these modes and as a function of the spatial scale of the loading. The limitations

of the standard approach are avoided in the fully coupled simulations described below.

We apply the ice-sheet model to the evolution of Antarctica from 40 ka to the present, focusing

on the last deglacial retreat of the past 20 ky. A polar stereographic grid is used, with relatively

coarse, 40 km grid resolution that permits the numerous long runs described in this chapter;

previous tests at 20 km and 10 km show that the results are not sensitive to this change in resolution

[Pollard and DeConto, 2012b,a]. This insensitivity extends to the mass flows of major ice streams,

which are still coarsely captured by the 40 km grid, as discussed in Pollard and DeConto [2012b].

There are 10 unevenly spaced vertical layers, with standard treatments of ice temperature advection

and vertical di↵usion. Basal sliding coe�cients under modern grounded regions are prescribed

from a previous run using an inverse procedure that penalizes misfit to modern observed surface

ice elevations [Pollard and DeConto, 2012a]. Basal sliding coe�cients in regions of modern ocean

or floating ice are set to a uniform value, either 10�5 or 10�6 m a�1 Pa�2, which represent highly

deformable “slippery” sediment. All runs below use 10�5 m a�1 Pa�2 unless otherwise stated.

There is no explicit basal hydrology in the model.
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Surface mass balance is computed from observation-based datasets of modern climatological

Antarctic precipitation and temperature (ALBMAP, Le Brocq et al. [2010]; with accumulation from

van de Berg et al. [2006]). Simple uniform perturbations for past climates are made in proportion to

deep-sea-core �18O variations, with a minor contribution due to austral insolation variations [Pollard

and DeConto, 2009, 2012a]. Simple lapse-rate corrections are made for elevation di↵erences from

modern, and a basic positive-degree-day scheme is used for melt [Pollard and DeConto, 2012a].

A simple two-value pattern of geothermal heat flux is prescribed with 54.6 mW m2 under East

Antarctica and 70 mW m2 under West Antarctica.

Calving at the edges of floating ice shelves is based on divergence of the ice velocity field as

described in Pollard and DeConto [2012b]. Sub-ice-shelf oceanic melting uses a simple parameteri-

zation, Eq. (17) of Pollard and DeConto [2012b], with a quadratic dependence on the temperature

di↵erence between “outer” ocean water and the ice-shelf base. However, in the present study the

ocean temperature is taken from archived results of a coupled atmosphere-ocean General Circula-

tion Model (A-OGCM) simulation of the last 22 ky [Liu et al., 2009]. Specifically, each ice grid

point is assigned the value of the nearest OGCM cell at 437 m depth. For times between 20 ka

and the present, we adopt the temperature at the corresponding time in the A-OGCM archive.

For times before 20 ka, we use the A-OGCM temperature at the time in the 20-to-0 ka range that

has the same deep-sea-core �18O value (a similar approach was adopted by Raymo and Mitrovica

[2012], who used �18O values to prescribe pre-LGM ice distributions).

6.2.2 Sea-Level Model

Our simulations implement the theory and algorithms described in Kendall et al. [2005] and re-

viewed in Chapter 2 to compute gravitationally self-consistent variations in sea level following

changes in the distribution of surface (grounded ice plus ocean) loading. The calculations incor-
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porate the time-varying deformation of a rotating, Maxwell viscoelastic Earth model with depth

dependent Earth structure, where the latter is comprised of an elastic lithosphere and a viscoelas-

tic mantle. The sea-level algorithm accurately treats the inundation of water into marine sectors

freed of grounded ice via a time-dependent tracking of shoreline geometry. The governing “sea-

level equation” is solved using a pseudo-spectral numerical scheme described in Chapter 2 with all

calculations performed up to spherical harmonic degree and order 512.

The sea-level theory requires as input, a model for viscoelastic Earth structure and a time

history of ice loading. In regard to the former, we adopt the elastic and density structure of the

Earth prescribed in the seismic model PREM [Dziewonski and Anderson, 1981]. The viscosity

of the Earth’s mantle is uncertain [Mitrovica, 1996]. The goal of this study is not to explore, in

detail, the sensitivity to this uncertainty (we leave this for future work), but rather to highlight

the impact of the physics introduced by coupling ice and sea-level models. To that end, we present

results based on the same viscosity model as was adopted in the calculations in Chapters 2, 4 and

5. As discussed, the model has been shown to satisfy a wide spectrum of data related to glacial

isostatic adjustment [e.g., Lambeck et al., 1998; Mitrovica and Forte, 2004] and is characterized by

an elastic lithospheric thickness of 120 km and upper and lower mantle viscosities of 5 ⇥ 1020 Pa s

and 5 ⇥ 1021 Pa s, respectively.

In the coupled simulation, changes in the distribution of grounded ice in Antarctica are passed to

the sea-level model by the ice-sheet model. However, sea level in the vicinity of the AIS is impacted

by changes in ice loading both locally and globally. Thus, in the results presented here, we adopt

the ICE5G model [Peltier, 2004] to prescribe the space-time geometry of ice complexes outside of

the AIS over the last 40 ky. ICE-5G is provided at spherical harmonic degree 256 resolution and we

interpolate the ice grids in order to be consistent with the truncation of spherical harmonic degree

512 adopted in the sea-level calculations.
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6.2.3 Coupling of Ice-Sheet and Sea-Level Models

Recall from Chapter 2 that the static sea-level theory assumes that the sea surface lies on a grav-

itational equipotential, and sea level (as discussed above) is defined globally as the di↵erence in

radial positions of the sea-surface equipotential and the solid surface. In oceanic regions, sea level

is synonymous with ocean bathymetry, whereas over land, sea level is the negative of land elevation

or topography.

To begin a coupled model simulation, the ice sheet model is initialized to its state at 40 ka in

a previous long-term Pleistocene run of the uncoupled model [similar to the run in Pollard and

DeConto, 2009]. The initial time 40 ka is chosen because (i) it allows a su�cient length of time

for model adjustment between Antarctic LGM and subsequent retreat (⇠20 to 10 ka) which is the

focus of this paper, and (ii) it lies in a period of relative stability of the AIS glacial-interglacial

cycle, with the ice sheet and bedrock reasonably close to equilibrium, as assumed for the initial

state by the sea-level model.

Next, the ice-sheet model is run forward with a time step of 1 year for a period of �T (henceforth,

the coupling interval). �T is typically chosen as 200 years. The ice model passes snapshots of ice

cover at the beginning and end of the coupling interval to the sea-level model, which then computes

the change in sea level across this interval. This change is passed back to the ice-sheet model, which

uses it to update the bedrock elevation (a simple operation, because the vertical coordinate in the

ice model is relative to the sea-surface gravitational equipotential, so “sea level” in the sea-level

model is “�1⇥ bedrock elevation” in the ice model). The ice-sheet model is then run through the

next �T interval and the process is repeated. In simulations shown here, the coupled model was

run for 40 ky, ending at the present.

Changes in sea level are passed from the sea-level model to the ice-sheet model, and vice versa

for changes in the ice load. Near Antarctica, the spatial grid resolution of both models is similar
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(⇠ 40 km), and simple bilinear interpolation is used in passing the fields. Although the bedrock

elevation has small-scale structure (mountain ranges, etc.), these features are close to invariant, and

the changes in bedrock elevation computed by the sea-level model are relatively smooth. Indeed,

simulations in which the resolution of the sea-level model was decreased by truncating the sea-level

solver at spherical harmonic degree 256 did not alter the results significantly. We also tested the

sensitivity of the coupled model to changes in the coupling interval and found that the results were

insensitive to a reduction in this interval by a factor of 4.

The coupled model requires a map of bedrock topography both globally (for the sea-level model)

and in the vicinity of the Antarctic Ice Sheet (for the ice-sheet model) at the start of the simulation.

Since the topography at 40 ka is unknown at the outset, we employ an iterative method to solve for

it. Specifically, we begin by making a guess for the initial topography (from a previous uncoupled

Pleistocene run mentioned above) and running the coupled model forward to the present. We then

take the di↵erence between the predicted present-day topography and the observed topography

(ETOPO globally, and ALBMAPv1 under the AIS), use this di↵erence to correct the initial guess for

topography at 40 ka, and run the coupled model again to the present. The process is repeated until

the predicted present-day topography converges to the observed topography within a prescribed

tolerance [Kendall et al., 2005].

6.3 Results

6.3.1 Coupled Ice Sheet - Sea Level Model Results

The coupled ice sheet - sea level model predicts changes in Antarctic ice distribution and global sea

level throughout the 40 ky simulation. Figures 6.1A-D show snapshots of the ice distribution at

times intended to sample phases of: maximum glacial extent (20 ka), periods of active deglaciation

(15 ka, 10 ka), and a period of relatively stable geometry (5 ka). Figure 6.1 also shows the associated
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Figure 6.1: Evolution of the coupled ice sheet - sea level model since LGM. (A-D) Ice thickness
in meters in Antarctica, at times specified above each frame. Grounded ice-surface elevation and
floating ice thickness are shown by the color scales on the right. (E-L) Sea level relative to the
modern (in meters) computed in the coupled simulation, plotted over Antarctica (E-H) and globally
(I-L). Scale for relative sea-level variations is given at bottom.

relative sea-level variation for each of the time slices (i.e., sea level at each time relative to the

present day) for the Antarctic (Figs. 6.1E-H) and the globe (Figs. 6.1I-L). Note that this is the

total sea-level change due to both the modeled AIS and the evolution of Northern Hemisphere ice

sheets prescribed from the ICE5G reconstruction [Peltier, 2004]. The solid blue line in Figure 6.2

is a time series of the volume of grounded ice in Antarctica over the full 40 ky of this simulation.

A grasp of the physics governing post-glacial sea-level change is essential in understanding how
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sea-level changes impact ice sheet dynamics. We summarize the main elements of post-glacial sea-

level change here; in Chapter 2.4 we provided a more detailed discussion using the results of an

illustrative suite of post-glacial sea-level calculations.

The physics associated with global scale sea-level variations (Figs. 6.1I-L) is relatively straight-

forward. Regions once covered by ice (or excess ice) experience a large amplitude uplift of the crust

and a pronounced, monotonic sea-level fall. Surrounding these regions are the peripheral bulges,

where post-LGM crustal subsidence contributes a component of sea-level rise. For time windows

that include periods of active deglaciation (Figs. 6.1I-K), the signal in both of the aforementioned

regions is modified by several processes, notably a global-scale sea-level rise due to the addition of

melt water to the oceans and a sea-level fall related to the diminished gravitational attraction of the

ice sheets. For time windows after the main phase of deglaciation (Figs.!6.1K-L), the sea-level rise

at the periphery of the ice centers is dominated by subsidence of the solid surface. Away from these

near-field regions, and during the deglaciation phase, sea-level rise is dominated by the addition

of meltwater to the oceans and the gravitationally driven migration of water from the near-field

regions (Figs. 6.1I-K). Equatorial regions are characterized by ⇠120 m, ⇠60 m and ⇠10 m of sea-

level rise over the last 20 ky, 15 ky and 10 ky, respectively. Once most global ice-sheet retreat

ceases, the predicted far-field sea-level change reflects the combined e↵ects of a minor amount of

sea-level rise associated with the residual addition of melt water to the oceans, solid surface uplift

(and sea-level fall) over continents due to ongoing ocean-loading e↵ects, and a broad migration of

water toward the subsiding peripheral bulges (Figs. 6.1K-L).

The general physics of GIA in the Antarctic, which has been the focus of significant research

[e.g., Ivins and James, 2005; Simon et al., 2010; Whitehouse et al., 2012b; Ivins et al., 2013], is

also evident in our predictions of relative sea-level change over the region, which show significant

geographic variability (Figs. 6.1E-H). The main centers of deglaciation, over the West Antarctic,
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are characterized by large amplitude, monotonic sea-level fall. During the deglaciation phase, the

East Antarctic, and a strip of land roughly half way between the Ross and Weddell Seas in the

West, experience a sea-level rise (Figs. 6.1E, F). This rise is a complex combination of a number

of processes, including subsidence of the bulges at the periphery of the melting centers (which

contributes a sea-level rise), a drawdown of the sea surface as the gravitational attraction toward

the WAIS decreases (sea-level fall), a sea-level rise associated with meltwater entering the ocean,

and ocean loading e↵ects along the margins of the continent, which tilt the solid surface upward

onshore (sea-level fall) and downward o↵shore (sea-level rise). The ocean loading and peripheral

bulge e↵ects give rise to the relatively large geographic gradients in the sea-level predictions along

the coastline of the East Antarctic. These e↵ects are particularly dominant at the end of, and after,

the main deglaciation phase (Fig. 6.1G and particularly 6.1H).

6.3.2 Comparison of Uncoupled and Coupled Model Simulations

In this section, we compare the timing and extent of ice-sheet retreat over the deglaciation phase pre-

dicted by the coupled ice sheet - sea level model (Fig. 6.1) and the unmodified Pollard and DeConto

[2012b] ice-sheet model (henceforth, the “uncoupled model”). As discussed in Section 6.2.1, there

are two main di↵erences between the coupled and uncoupled models in regard to their treatment

of sea-level change at the grounding line: (1) the coupled model incorporates a more sophisticated

treatment of deformation of the solid Earth that captures the full, multi-normal mode response of

a viscoelastic planet, whereas the uncoupled model adopts an adjustment with a single exponential

decay time that is prescribed and fixed for all runs. In addition, elastic e↵ects in the uncoupled

model are only included through a flexural filtering of the viscous response to account for the pres-

ence of a lithosphere; (2) the uncoupled model assumes that the shape of the sea surface is fixed,

and the height of this surface shifts up and down to account for changes in global ice volume. In
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Figure 6.2: Changes in Antarctic grounded ice volume as a function of time over the last 40 ky.
(A) Time series of total grounded Antarctic ice volume (in 106 km3). (B) Time series of equivalent
global mean (eustatic) sea-level change relative to the start of the simulation at 40 ka (in meters),
calculated by taking the volume of grounded ice above floatation thickness, multiplying by the ratio
of ice and water densities, and dividing by the area of the modern ocean. Note that this quantity
does not have an exact 1-to-1 relationship with the total grounded volume plotted in (A). Solid
curves show simulations with the fully coupled ice sheet - sea level model (blue curve), the uncoupled
model (green curve), and the coupled model with an approximate treatment of sea-surface height
changes (red curve, “noIOG”). The dashed curves are analogous with the solid, but with basal
sliding coe�cients in modern oceanic regions reduced from C

o

= 10�5 to C
o

= 10�6 m a�1 Pa�2.
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contrast, the coupled model incorporates gravitationally self-consistent perturbations in the shape

of the sea-surface equipotential associated with both the redistributions of the surface mass (ice

plus ocean) load and viscoelastic deformation of the solid Earth. The model invokes conservation

of mass to constrain any geographically uniform shift in the height of the equipotential.

Figure 6.3 shows five snapshots in time ranging from 15 ka to present for the coupled (Figs. 6.3A-

E) and uncoupled (Figs. 6.3F-J) simulations. The remaining frames show di↵erences in the extent

(Figs. 6.3K-O) and thickness (Figs. 6.3P-T) of grounded ice between the two simulations. The AIS

volume through time for the uncoupled simulation is shown by the solid green line in Figure 6.2,

which can be compared with the corresponding result for the coupled simulation (solid blue line).

The sea-level coupling acts to slow down the advance of the WAIS toward and during maximum

ice conditions, and the result is a smaller WAIS during this phase (Fig. 6.2). The coupling also

slows the subsequent retreat of the WAIS, relative to the uncoupled simulation, for a time period

extending from the LGM to ⇠6 ka (Fig. 6.2). This general behavior confirms, for these 3-D ice-sheet

simulations, our earlier conclusions based on both an equilibrium marine ice-sheet stability theory

[Gomez et al., 2010a] and 1-D ice-sheet simulations [Gomez et al., 2012]; namely, that the sea-level

coupling is a negative feedback for grounding-line migration, and acts to stabilize the volume of a

marine-based ice sheet.

These e↵ects are also seen in the di↵erences in the extent and thickness of grounded ice between

the two simulations. At 15 ka, the uncoupled simulation predicts more extensive ice cover than the

coupled model simulation along the coastline of the Antarctic (Fig. 6.3K), with the di↵erence in

thickness reaching ⇠1 km (Fig. 6.3P). As time progresses, the less stable ice sheet in the uncoupled

simulation retreats more quickly than in the coupled case, and by 8 ka, the coupled simulation

predicts more extensive and thicker (by ⇠500 m) ice cover in both the Ross and Ronne grounding

zones (Fig. 6.3N, 6.3S). We conclude on the basis of these results that the self-stabilization mecha-
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Figure 6.3: Comparison of ice distributions over the last 15 ky predicted using coupled and uncou-
pled models. (A-J) Snapshots in time (label at top) of grounded ice-surface elevation and floating
ice thickness in meters, as indicated by the upper and middle color scales on the right, respectively.
(A-E) Using the coupled model. (F-J) Using the uncoupled model. (K-O) Di↵erences in grounded
ice extent between the coupled and uncoupled model results. Areas covered by grounded ice in the
uncoupled model but not in the coupled model are shown in purple, while the reverse are shown in
red. (P-T) Di↵erences in grounded ice thickness in meters (uncoupled minus coupled models), as
indicated by the color scale on the lower right.
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nism (i.e., the feedback of sea-level changes into ice-sheet stability) identified in earlier work [Gomez

et al., 2010a, 2012, Chapters 4 and 5] is a universal property of grounded sectors of marine-based

ice sheets.

As noted above, the di↵erences between the uncoupled and coupled model runs are due to the

treatments of the perturbation in both surfaces that bound sea level: The sea surface and the solid

surface. We must emphasize that these treatments are not independent. Solid surface deformation

is driven by ice and ocean load changes, and the latter is clearly a function of the treatment

of the sea-surface height. Nevertheless, in the following, we attempt to isolate and identify the

e↵ects of the sea-surface height treatment, by performing an additional coupled run with ice-ocean

gravitational attraction turned o↵ (called “noIOG” below, for no Ice Ocean Gravity). Further

details on the implementation of this approximation are provided in Appendix A.

Figures 6.4A-E show the ice distribution over the last 10 ky of the coupled simulation (i.e., as

in Fig. 6.3C-E). In contrast, Figures 6.4F-J show snapshots from the noIOG simulation, in which

the sea-surface height changes in the coupled model are replaced by a geographically uniform shift

that represents only the globally averaged sea-level change associated with the time-varying global

ice volume budget. The simulation includes solid Earth deformation driven by both the changing

ice load and the geographically uniform ocean-load change. The final row in Figure 6.4 shows

di↵erences in ice extent from the fully coupled model. The time series of ice volume for the noIOG

simulation is given in Figure 6.2 (solid red line).

The approximate treatment of the sea-surface height variation weakens the stabilizing influ-

ence of sea-level changes at the grounding line since it ignores the gravitational e↵ects of the

changing ice load. These gravitational e↵ects are most prominent during rapid ice load changes.

From 10 to 7 ka in Figure 6.4, while the ice sheet is rapidly melting, the coupled (gravitationally

self-consistent) simulation predicts a drawdown of the sea surface at grounding lines in the West
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Figure 6.4: Impact of the treatment of sea-surface height changes on ice distribution. (A-J) Snap-
shots in time (labels at top) of grounded ice surface elevation and floating ice thickness in meters, as
indicated by the upper and lower color scales on the right, respectively. (A-E) Using the standard
coupled model. (F-J) Using the coupled model with an approximate treatment of sea-surface height
changes (“noIOG”). (K-O) Di↵erences in grounded ice extent between the two simulations. Areas
covered by grounded ice in the standard coupled model but not in the noIOG model are shown in
red (the reverse does nor occur).
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Antarctic, thereby reducing ice flux and slowing grounding-line retreat in this region. This com-

ponent of the stabilization accounts for the large di↵erences in the two simulations over this 3 ky

time period (Figs. 6.4K-L; Fig. 6.2). As the deglaciation slows, the perturbation to the sea-surface

height in the fully coupled model is reduced, and di↵erences between the two simulations remain

relatively stationary (Figs. 6.4M-O).

6.3.3 Sliding Coefficients and Total Volume Change

The slipperiness of the bedrock beneath the AIS exerts a considerable control on the total volume

of ice at LGM. A sticky bed inhibits the flow of ice, and therefore the volume of grounded ice

should increase as the slipperiness of the bed is reduced. In our simulations, slipperiness of the bed

is represented by the basal sliding coe�cient in a Weertman-type law relating sliding velocity to

basal shear stress. As discussed in Section 6.2.1, basal sliding coe�cients under the grounded areas

of the modern AIS have been deduced in an inverse procedure constrained by observed surface

ice elevations [Pollard and DeConto, 2012a]. However, basal sliding coe�cients in modern oceanic

regions (floating ice shelves and continental shelves), over which the grounding line migrates during

periods of glacial expansion, are much less constrained [Pollard and DeConto, 2012b].

The coupled simulations described thus far were performed using a sliding coe�cient in modern

oceanic regions of 10�5 m a�1 Pa�2. This value is representative of deformable sediment as deduced

by the inversion procedure for grounded ice streaming areas of the Siple Coast. In Figures 6.5A-E we

show time slices for a coupled simulation in which the sliding coe�cient in modern oceanic regions is

decreased by an order of magnitude, to 10�6 m a�1 Pa�2. This is still relatively slippery, compared

to hard-bedrock values of 10�10 m a�1Pa�2 [Pollard and DeConto, 2012a]. The dashed blue line

in Figure 6.2 is the time series of Antarctic ice volume for this simulation. Figures 6.5A-E can be

compared to Figures 6.3A-E, and the dashed blue line to the solid blue in Figure 6.2, to consider the
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Figure 6.5: Impact of decreased basal sliding on ice distribution and volume. (A-E) Snapshots in
time (label at top) of grounded ice-surface elevation and floating ice thickness in meters, shown
by the upper and lower color scales on the left, respectively, using the coupled model with basal
sliding coe�cients in modern oceanic regions reduced to 10�6 m a�1 Pa�2 (from the standard
coupled model value of 10�5 m a�1 Pa�2). Color scales are as in Figs. 6.1, 6.3 and 6.4. (F-J)
Di↵erences in grounded ice thickness from the standard coupled model (shown in Figs. 6.3A-E) in
meters (i.e., less slippery minus slippery bed simulations), as indicated in the color scale on the
right.
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impact of decreasing the slipperiness of the bed outside the present-day grounding line. The less-

slippery bed simulation is characterized by significantly more ice throughout the 40 ky simulation,

ending in a modern state with somewhat greater volume than observed. Finally, Figures 6.5F-J

show the di↵erence in ice thickness between the two simulations. During the deglaciation, in the

time window from 12 to 10 ka, this di↵erence can exceed 1 km over the present day location of the

Weddell and Ross Seas.

Figure 6.2 also shows time series of Antarctic ice volume in the case of an uncoupled run (dashed

green line) and the noIOG run (dashed red line) with the smaller sliding coe�cient. As was the case

for the solid lines, the dashed lines indicate that the noIOG simulation (i.e., the model run in which

gravitational e↵ect on the sea surface is removed) provides an intermediate level of stabilization

between the coupled and uncoupled runs. A comparison of the solid lines and the dashed lines

shows that the importance of this gravitational e↵ect (the di↵erence between the red and blue

lines) relative to the approximate treatment of solid Earth deformation (di↵erence between the

green and red lines) depends on the details of the ice distribution, which in turn depends on the

adopted sliding coe�cient (among other factors).

6.4 Preliminary Comparison to Relative Sea Level and Modern Uplift Rate Data

Our coupled model simulation is driven by the physics incorporated into the ice-sheet and sea-level

models and it has not been tuned to fit geological and geodetic constraints on glacial isostatic

adjustment. (We note that in running the coupled model, we have used parameter settings from

previous versions of both the sea-level and uncoupled ice-sheet components). The model can there-

fore be tested, a-posteriori, by comparing the results to local observations related to glacial isostatic

adjustment.

In this section, we present a preliminary comparison of our predictions of site-specific relative

120



sea-level (RSL) histories (Fig. 6.6) and present-day uplift rates (Fig. 6.7) to relevant observational

data sets [Roberts et al., 2011; Thomas et al., 2011; Briggs and Tarasov, 2013]. The comparison

shown in each of these figures involves the standard coupled model, the coupled model with a

sliding coe�cient of 10�6 m a�1Pa�2 in modern oceanic regions, and the uncoupled model.

The three model simulations provide comparable fits to the RSL histories in the Antarctic

region (Fig. 6.6). The existing RSL data set does not appear to robustly discriminate between

the coupled and uncoupled simulations. While we have adopted a single Earth model to highlight

the ice sheet-sea level coupling in this study, the fits obtained from our coupled simulations are

comparable to the fit achieved in recent uncoupled model simulations where the Earth model was

varied to obtain a best fit to the relative sea-level records [Whitehouse et al., 2012a,b].

Figure 6.7 summarizes the analysis of uplift rates in the Antarctic region estimated from GPS

surveying and corrected for elastic uplift associated with recent melting [Thomas et al., 2011;

Whitehouse et al., 2012b]. In this case, the standard coupled simulation provides a statistically

improved fit over both the coupled simulation with a stickier bed within modern oceanic regions

and the uncoupled simulation (see rms fits provided in Figs. 6.7G-I). In particular, the latter two

simulations predict uplift rates at a significant number of sites that are well above the observed

rates. In the Antarctic Peninsula and inland of the Ronne Ice Shelf, predicted uplift rates are

progressively greater as one moves from the coupled model, to the uncoupled model and, finally, to

the coupled model with stickier bed. This trend leads to progressively greater misfits between the

modeled and observed uplift rates in this region. At sites northwest and northeast of the Ross Ice

Shelf, the uncoupled model predicts significantly greater uplift rates, and is characterized by greater

misfits to the observed rates, as compared to either of the coupled model runs. Note that fits to

RSL and uplift rate data will be sensitive to the adopted Earth model. A preliminary consideration

of this sensitivity is presented in the final remarks in Chapter 7 (Fig. 7.1).
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Figure 6.6: Comparison of RSL predictions generated from model simulations with observational
constraints. Curves on each frame show RSL predictions at a given site (as labeled; location shown
in middle frame) based on the coupled model (thick red lines), the coupled model with basal sliding
coe�cients in modern oceanic areas reduced to 10�6 m a�1 Pa�2 (thin dashed red lines), and the
uncoupled model (blue lines). Black markers and error bars show field data from the compilation
of Briggs and Tarasov [2013], except for James Ross Island, where the data are from Hjort et al.
[1997] as discussed in Roberts et al. [2011]. Circular markers represent two-way constraints on sea
level, and upward and downward pointing triangular markers represent one-way lower and upper
bounds on sea level, respectively. For the one-way markers, error bars in the non-bounded direction
are indeterminate.
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Figure 6.7: Comparison of model predicted and geodetically observed uplift rates. The latter are
based on GPS measurements obtained at exposed bedrock sites, corrected for elastic uplift due to
modern ice-mass flux (Thomas et al., 2011 main text and supplement; tabulated in Whitehouse
et al., 2012b, see their Table S2). (A-C) Maps of model predicted uplift rates over Antarctica with
color scale indicated on the left. (D-F) Misfit between modeled and observed uplift rates, following
the color scale on the left, at the locations of the GPS sites. The size of the circles is proportional
to the accuracy of the GPS estimate. (G-I) Scatter plots showing predicted versus observed uplift
rates. Vertical bars show one-sigma observational uncertainties and rms fits are as indicated on the
plots. Columns in the figure are distinguished on the basis of the simulation: (A, D, G) Coupled
model. (B, E, H) Uncoupled model. (C, F, I) Coupled model with basal sliding coe�cients in
modern oceanic areas reduced to 10�6 m a�1 Pa�2.
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6.5 Conclusions

In earlier work based on steady state [Gomez et al., 2010a, Chapter 4] and 1-D [Gomez et al., 2012,

Chapter 5] ice sheet models we showed that sea-level variations driven by local and regional ice-

mass changes act to self-stabilize marine ice-sheet grounding lines. In this study, we have extended

this work by coupling a 3-D ice sheet-shelf model with a gravitationally self-consistent treatment of

post-glacial sea-level change, and have demonstrated that the sea-level stabilization is a universal

property of marine-based ice sheets. Sea-level trends arising from the evolution of the 3-D ice-

sheet model reflect the complex nature of the gravitational, deformational and rotational processes

driving post-glacial sea-level change, and this complexity is, in turn, reflected in the detailed, site-

specific impact of the sea-level coupling. The incorporation of the sea-level coupling can perturb

ice thicknesses at sites close to AIS grounding lines by up to ⇠1 km (Fig. 6.3), and reduce the

integrated excess ice volume at LGM by ⇠ 25% (Fig. 6.2).

The contribution from Antarctica to globally averaged sea-level rise since the LGM is a matter of

active debate. Recent GIA and ice-sheet modeling studies suggest that this contribution is ⇠7-9 m

in units of equivalent globally uniform sea-level change [Whitehouse et al., 2012a; King et al., 2013;

Ivins et al., 2013], significantly lower than previous estimates that were closer to 20 m [e.g., Peltier,

2004]. Our calculations support the newer estimates, although our simulations indicate that the

excess ice volume may be sensitive to the slipperiness of bed outside present-day grounding lines

(Fig. 6.2). In any event, the lower estimates of AIS volume at LGM, if robust, have implications

not only for climate simulations at this time, but also for the potential contribution of the AIS to

subsequent, critical events in ice-age climate, such as Meltwater Pulse 1A.

We have focused on the impact of gravitationally self-consistent sea-surface height perturbations

on the evolution of the 3-D Antarctic Ice Sheet model. A comparison of the uncoupled versus noIOG

124



simulations in Figure 6.2 (i.e., green lines versus associated red lines) provides a measure of the

e↵ect of approximating the full multi-normal mode response of the viscoelastic Earth model with a

single decay time and elastic lithospheric flexure. Earlier studies have explored the sensitivity of ice-

sheet models to the adopted bedrock response model [Le Meur and Huybrechts, 1996, 2001; van den

Berg et al., 2008]. In accordance with these studies, we advocate the adoption of a full viscoelastic

response, because in this case, the decay times of the normal modes, and their dependence on

the spatial scale of the load, follows naturally from the adopted viscoelastic structure rather than

from an ad-hoc tuning of a single decay time. This is particularly important given that the time-

dependent evolution of an ice sheet involves a broad range of spatial scales (e.g., Fig. 6.1).

We considered only a single viscoelastic Earth model in the simulations described above. As

discussed above, in Figure 7.1, we present results from a preliminary sensitivity analysis in which

we vary the parameters defining the Earth model (e.g., lithospheric thickness, upper and lower

mantle viscosities) across plausible ranges. Seismic tomography indicates slower than average wave

speeds in the asthenosphere beneath the WAIS, suggesting the presence of a low viscosity zone in

this region, as well as a thinner lithosphere, relative to mantle below the EAIS [e.g., Morelli and

Danesi, 2004; Kaufmann et al., 2005]. Accordingly, in future work, we will also consider the impact

of this level of 3-D Earth structure, and other regional rheological complexities [Ivins et al., 2011;

Nield et al., 2012], on the coupled model simulations.

The potential importance of the sea-level feedback described here indicates that it would be

useful to reassess AIS stability during other time periods. To this end, our future work will consider,

following Pollard and DeConto [2009], the evolution of the AIS over the entire Plio-Pleistocene time

period, as well as the response of the ice sheet to ongoing and future climate warming scenarios.

In addition, it would be worthwhile to investigate the stability of marine sectors of Northern

Hemisphere ice sheets during the last glacial cycle of the ice age.
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Chapter 7

Final Remarks

The work in this thesis highlights the importance of taking an integrated view of ice sheet, sea

level, and solid Earth interactions. In Chapter 2, I presented a generalized theory for computing

changes in sea level and solid Earth deformation following variations in the distribution of grounded

ice cover and characterized the physical e↵ects that contribute to patterns of sea-level change that

arise on di↵erent timescales. This discussion emphasizes that the unique sea-level “fingerprints”

that arise from di↵erent ice mass changes can be used as a tool to investigate a broad range of

problems related to ice-age climate. As an example, in Chapter 3, I used the sea-level patterns

that arise from a recent model for the retreat of North American ice cover during Meltwater Pulse

1A to revisit the possible role of this retreat in the meltwater pulse. In Chapter 3 and throughout

this thesis, I showed that accurate modeling of both the distribution of ice through time and the

associated sea-level changes are important for the analysis and interpretation of relative sea-level

records and glacial isostatic adjustment data.

In the remaining chapters, I coupled the generalized sea-level theory to a series of increasingly

complex and realistic ice-sheet models, to determine the impact that sea-level changes at the ground-

ing line have on marine ice sheet stability and dynamics. In Chapter 4, I incorporated gravitation-

ally self-consistent sea-level changes into the canonical model of equilibrium (time-independent)
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marine ice sheet stability [Weertman, 1974] and showed that these sea-level changes have a stabi-

lizing influence on marine ice sheets. This work demonstrated that the so-called Marine Ice Sheet

Stability Hypothesis, which posits that grounded marine ice-sheets resting on reverse bed slopes are

inherently unstable, is not universally valid. In Chapter 5, I extended this equilibrium analysis to

consider the influence of sea-level changes on the timescale of ice sheet retreat by coupling a global

sea-level model to a one-dimensional, dynamic ice-sheet model. I demonstrated that the sea-level

fall in the vicinity of a retreating ice sheet acts to slow down, and in some cases, halt grounding-line

migration. Finally, after having explored the physics of the coupling using simplified ice sheet and

bedrock geometries, in Chapter 6, I coupled a realistic Antarctic ice sheet - shelf model [Pollard

and DeConto, 2012b] to a gravitationally self-consistent global sea-level model. I applied the cou-

pled model to simulated the retreat of the AIS through the last deglaciation. A comparison of

simulations with and without the sea-level coupling reinforced the conclusions of Chapters 4 and

5 in a more realistic setting, and showed that the sea-level feedback is universal and that it has a

significant impact on rate and extent of ice-sheet retreat and advance. I conclude that the influence

of sea-level changes on marine ice-sheet stability and dynamics should be accounted for in models

of marine ice-sheet evolution.

In Chapter 6, I adopted a single model to describe radial Earth structure. However, internal

Earth structure is characterized by significant lateral variability. Figure 7.1A shows seismic tomo-

graphic images at 80, 120, 160 and 200 km depths beneath Antarctica. While the East Antarctic

sits on a stable craton characterized by a thick lithosphere, the West Antarctic is underlain by a

large continental rift system with a thinned lithosphere on top of a thin zone of hot, low viscosity

material [Morelli and Danesi, 2004; Kaufmann et al., 2005]. Such large lateral di↵erences in Earth

structure across the Antarctic continent suggests that an exploration of the sensitivity of results

presented in Chapter 6 to variations in Earth model parameters is warranted. Figure 7.1B-E shows
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Figure 7.1: Comparison of RSL predictions generated from coupled model simulations with obser-
vational constraints for a range of Earth model parameters. (A) Plots taken directly from Morelli
and Danesi [2004]’s Figure 2 showing Earth structure beneath Antarctica. Percent variations in
shear wave velocity are plotted at 80 km, 140 km, 180 km and 220 km depths as labeled. (B-E)
Curves show RSL predictions at a given site (as labeled; location shown on the map at bottom
right) based on the coupled model with basal sliding coe�cients in modern oceanic areas set to
10�6 m a�1 Pa�2 and Earth models characterized by lithospheric thickness and upper and lower
viscosities set to: 120 km, 5⇥1020 Pa s and 5⇥1021 Pa s (dark blue lines); 50 km, 5⇥1020 Pa s and
5 ⇥ 1021 Pa s (green lines); 120 km, 2 ⇥ 1020 Pa s and 5 ⇥ 1021 Pa s (light blue lines); and 50 km,
5 ⇥ 1020 Pa s and 5 ⇥ 1021 Pa s, respectively with a low viscosity zone of 1019 Pa s inserted
below the thin lithosphere down to 200 km depth (red lines). As in Figure 6.6, black markers and
error bars show field data from the compilation of Briggs and Tarasov [2013], except for James
Ross Island, where the data are from Hjort et al. [1997] as discussed in Roberts et al. [2011].
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the results of a preliminary investigation of this sensitivity. In each plot, relative sea-level data and

predictions based on the standard Earth model from Chapter 6 (blue lines) are compared to: A

model with a thinned lithosphere of 50 km (green lines); a model with a less viscous upper mantle

of 2 ⇥ 1020 Pa s (light blue lines); and a model with a 50 km thick lithosphere underlain by a low

viscosity zone of 1019 Pa s extending down to 200 km depth (red lines). The last of these models is

similar to the Earth structure depicted beneath the WAIS in Figure 7.1A. The results are clearly

sensitive to viscosity in the upper mantle, and those that adopt either a low viscosity whole upper

mantle, or a thin low viscosity zone at the base of the lithosphere, show improved fits to the relative

sea-level data in the West Antarctic. (Note that curves over the East Antarctic were not shown in

Figure 7.1 since a very low viscosity model may not be appropriate there.)

Varying the viscoelastic Earth model parameters impacts relative sea-level predictions by: 1) al-

tering the timing and geometry of load-induced Earth deformation (and thus sea level); and 2) per-

turbing, via the sea-level feedback, the timing and extent of the ice-sheet retreat. A coupled ice

sheet - sea level model that captures the full and complex interaction between ice distribution and

Earth deformation is necessary to rigorously explore this connectivity. In future work, I will couple

a 3-D sea-level model to an ice-sheet model to investigate the impact of these lateral variations in

Earth structure over the Antarctic continent on ice-sheet and sea-level changes.

In Chapter 3, we discussed the issue of constraining the contributions from various ice sheets

to sea-level rise during the last deglaciation. In particular, global sea-level records indicate that

the Antarctic may have contributed significantly to Meltwater Pulse 1A, a large pulse of meltwater

release that punctuated the deglaciation [Clark et al., 2002; Bassett, 2005]. This would imply that

the AIS was significantly larger at LGM than at present. To the contrary, recent GIA and ice-sheet

modeling studies [e.g., Whitehouse et al., 2012a; King et al., 2013; Ivins et al., 2013, Chapter 6]

indicate that Antarctica likely contributed only ⇠5-9 meters in units of equivalent globally uniform
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sea-level rise during the last deglaciation. However, none of the latter studies employed Earth

models that accurately reflect the lateral variability in viscoelastic structure underneath Antarctica.

For example, the Whitehouse et al. [2012a] and King et al. [2013] studies identified a preferred Earth

model with an upper mantle viscosity of 1 ⇥ 1021 Pa s on the basis of fits to sea-level data. This

inference is higher than all GIA inferences of upper mantle viscosity over the last 15 years, and

much higher than would be implied by the shear wave heterogeneity in Figure 7.1A.

The simulations in Figure 7.1B-E were performed with sliding coe�cient of 10�6 m a�1 Pa�2.

As discussed in Chapter 6, this higher friction allows for increased ice volume at LGM equivalent

to ⇠ 2 meters of global average sea-level relative to the standard coupled simulations in Chapter 6

(Figure 6.2). While predicted relative sea-level curves based on the standard Earth model misfit

the observations (the blue lines in Figure 7.1B-E lie above the data), the simulations with reduced

upper mantle viscosity (light blue lines) and a shallow low viscosity zone below a thin lithosphere

(red lines) show better fits to the relative sea-level data. These preliminary results suggest that a

larger LGM Antarctic ice volume may be plausible if paired with more realistic Earth structure,

and this motivates an important direction for future work.

The importance of the interactions between marine ice-sheet dynamics and sea-level variations

suggests that a coupled ice sheet - sea level model will be an important tool for exploring a suite

of other ice-age climate problems. For example, in future work I will investigate AIS stability and

evolution during other time periods, including the Pliocene Epoch when temperatures were warmer

than today, and over the next century in response to climate warming scenarios. In addition, the

coupled model can be adopted to investigate the stability of marine sectors of Northern Hemisphere

ice sheets and the potential for inter-hemispheric teleconnections between ice sheets [e.g., Denton

et al., 1986]. Finally, to date I have focussed on ice-sheet retreat, but the results in Figure 6.2

clearly demonstrate that the sea-level feedback also acts to dampen the advance of the grounding
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line. Since there is a lag in the response of the Earth to ice sheet changes, there is a possibility

for hysteretic behavior to arise. I plan to explore whether such behavior could be a possible

alternative explanation for observed periodic, rapid fluctuations in ice extent during Dansgaard-

Oeschger events.
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Appendix A

Sea-Level Theory for no-IOG Calculations

In the main text, we perform simulations with the coupled ice sheet - sea level model in which we

turn o↵ the e↵ects of ice-ocean gravitational attraction. We call these simulations “noIOG” for

“no ice-ocean gravity”. The purpose of these simulations is to isolate and assess the impact on

the results of adopting an approximate treatment of sea-surface height deformation in the sea-level

model. The “noIOG” simulations accounts for changes in elevation of the solid Earth in the same

way as the fully coupled model, but assumes that the sea surface height rises and lowers uniformly

as global ice volumes decrease and increase (as in the uncoupled model).

In the “noIOG” runs, the change in topography is given by the following modified version of

equation 2.43 in Section 2.2.2:
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where we zero out the Love numbers associated with deformation of the sea surface equipotential,
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such that equations 2.38 and 2.39 in Section 2.2.2 become:
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�Seus(t
j

) is the global average, or “eustatic” sea-level change from the start of the simulation to

time t
j

. It is identical to the change in sea surface height adopted in uncoupled simulations. That

is,
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where �Igaf00 is the (0,0) spherical harmonic component of the change in ice grounded above floata-

tion, and C is the ocean function, as defined in Section 2.2, equation 2.4. �Seus

lm

(t
j

) and �Seus

lm

(t
j

)

represent spherical harmonic decompositions of the eustatic sea-level change from the start of the

simulation to time t
j

and over the time increment from t
j�1 to t

j

, respectively. All other variables

and parameters are as defined in Section 2.2.
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