827 research outputs found

    Project characteristics for design and build procurement in Malaysian construction industry

    Get PDF
    Design & Build procurement approach is one of the procurement methods which is known to be widely gaining popularity in order to serve the modern day construction clients desire of having a constructed facility. To effectively service the market-driven expansion of this project delivery strategy in the construction community, a fundamental understanding of the characteristics of the Design & Build procurement approach is necessary. This study is aimed at appraising the Design & Build procurement approach in the Malaysian construction industry based on current practice through identifying the characteristics of the procurement approach. For this purpose, a detailed literature review of the Design & Build characteristics was conducted and data was collected from a two round Delphi questionnaire survey conducted with experienced professionals that have vast experience in the Design & Build procurement practice. The relative importance of these characteristics were quantified by the relative importance index method demonstrating their level of priority. The key findings in the study showed that the practice of the procurement approach in Malaysia is most importantly characterized by the fact that it is most suitable for projects that are complex in nature, while ‘effective client representation’ is the least important characteristic of the Design & Build procurement approach with regard to the Malaysian construction industry. It is expected that with the consideration of these characteristics of the D&B procurement approach, it will consequently result in the overall improvement in the performance of the Malaysian construction industry in relation to project delivery

    Cosmology and two-body problem of D-branes

    Full text link
    In this paper, we investigate the dynamics and the evolution of the scale factor of a probe Dp-brane which move in the background of source Dp-branes. Action of the probe brane is described by the Born-Infeld action and the interaction with the background R-R field. When the probe brane moves away from the source branes, it expands by power law, whose index depends on the dimension of the brane. If the energy density of the gauge field on the brane is subdominant, the expansion is decelerating irrespective of the dimension of the brane. On the other hand, when the probe brane is a Nambu-Goto brane, the energy density of the gauge field can be dominant, in which case accelerating expansion occurs for p≀4p \leq 4. The accelerating expansion stops when the brane has expanded sufficiently so that the energy density of the gauge field become subdominant.Comment: 6 pages, 7 figures, reference added, accepted for publication in PR

    Moduli stabilization with positive vacuum energy

    Get PDF
    We study the effect of anomalous U(1) gauge groups in string theory compactification with fluxes. We find that, in a gauge invariant formulation, consistent AdS vacua appear breaking spontaneously supergravity. Non vanishing D-terms from the anomalous symmetry act as an uplifting potential and could allow for de Sitter vacua. However, we show that in this case the gravitino is generically (but not always) much heavier than the electroweak scale. We show that alternative uplifting scheme based on corrections to the Kahler potential can be compatible with a gravitino mass in the TeV range.Comment: 20 pages, 1 figur

    Inflation in Realistic D-Brane Models

    Full text link
    We find successful models of D-brane/anti-brane inflation within a string context. We work within the GKP-KKLT class of type IIB string vacua for which many moduli are stabilized through fluxes, as recently modified to include `realistic' orbifold sectors containing standard-model type particles. We allow all moduli to roll when searching for inflationary solutions and find that inflation is not generic inasmuch as special choices must be made for the parameters describing the vacuum. But given these choices inflation can occur for a reasonably wide range of initial conditions for the brane and antibrane. We find that D-terms associated with the orbifold blowing-up modes play an important role in the inflationary dynamics. Since the models contain a standard-model-like sector after inflation, they open up the possibility of addressing reheating issues. We calculate predictions for the CMB temperature fluctuations and find that these can be consistent with observations, but are generically not deep within the scale-invariant regime and so can allow appreciable values for dns/dln⁥kdn_s/d\ln k as well as predicting a potentially observable gravity-wave signal. It is also possible to generate some admixture of isocurvature fluctuations.Comment: 39 pages, 21 figures; added references; identified parameters combining successful inflation with strong warping, as needed for consistency of the approximation

    Warping and F-term uplifting

    Get PDF
    We analyse the effective supergravity model of a warped compactification with matter on D3 and D7-branes. We find that the main effect of the warp factor is to modify the F-terms while leaving the D-terms invariant. Hence warped models with moduli stabilisation and a small positive cosmological constant resulting from a large warping can only be achieved with an almost vanishing D-term and a F-term uplifting. By studying string-motivated examples with gaugino condensation on magnetised D7-branes, we find that even with a vanishing D-term, it is difficult to achieve a Minkowski minimum for reasonable parameter choices. When coupled to an ISS sector the AdS vacua is uplifted, resulting in a small gravitino mass for a warp factor of order 10^-5.Comment: 24 pages, v3: typos, minor clarifications adde

    Racetrack Inflation

    Full text link
    We develop a model of eternal topological inflation using a racetrack potential within the context of type IIB string theory with KKLT volume stabilization. The inflaton field is the imaginary part of the K\"ahler structure modulus, which is an axion-like field in the 4D effective field theory. This model does not require moving branes, and in this sense it is simpler than other models of string theory inflation. Contrary to single-exponential models, the structure of the potential in this example allows for the existence of saddle points between two degenerate local minima for which the slow-roll conditions can be satisfied in a particular range of parameter space. We conjecture that this type of inflation should be present in more general realizations of the modular landscape. We also consider `irrational' models having a dense set of minima, and discuss their possible relevance for the cosmological constant problem.Comment: 23 pages 7 figures. The final version with minor modifications, to appear in JHE

    D-Brane Chemistry

    Full text link
    We study several different kinds of bound states built from D-branes and orientifolds. These states are to atoms what branonium - the bound state of a brane and its anti-brane - is to positronium, inasmuch as they typically involve a light brane bound to a much heavier object with conserved charges which forbid the system's decay. We find the fully relativistic motion of a probe Dp'-brane in the presence of source Dp-branes is integrable by quadratures. Keplerian conic sections are obtained for special choices for p and p' and the systems are shown to be equivalent to nonrelativistic systems. Their quantum behaviour is also equivalent to the corresponding non-relativistic limit. In particular the p=6, p'=0 case is equivalent to a non-relativistic dyon in a magnetic monopole background, with the trajectories in the surface of a cone. We also show that the motion of the probe branes about D6-branes in IIA theory is equivalent to the motion of the corresponding probes in the uplift to M-theory in 11 dimensions, for which there are no D6-branes but their fields are replaced by a particular Taub-NUT geometry. We further discuss the interactions of D-branes and orientifold planes having the same dimension. this system behaves at large distances as a brane-brane system but at shorter distances it does not have the tachyon instability.Comment: ref. added and typos correcte

    Branonium

    Full text link
    We study the bound states of brane/antibrane systems by examining the motion of a probe antibrane moving in the background fields of N source branes. The classical system resembles the point-particle central force problem, and the orbits can be solved by quadrature. Generically the antibrane has orbits which are not closed on themselves. An important special case occurs for some Dp-branes moving in three transverse dimensions, in which case the orbits may be obtained in closed form, giving the standard conic sections but with a nonstandard time evolution along the orbit. Somewhat surprisingly, in this case the resulting elliptical orbits are exact solutions, and do not simply apply in the limit of asymptotically-large separation or non-relativistic velocities. The orbits eventually decay through the radiation of massless modes into the bulk and onto the branes, and we estimate this decay time. Applications of these orbits to cosmology are discussed in a companion paper.Comment: 34 pages, LaTeX, 4 figures, uses JHEP

    Warped Tachyonic Inflation in Type IIB Flux Compactifications and the Open-String Completeness Conjecture

    Full text link
    We consider a cosmological scenario within the KKLT framework for moduli stabilization in string theory. The universal open string tachyon of decaying non-BPS D-brane configurations is proposed to drive eternal topological inflation. Flux-induced `warping' can provide the small slow-roll parameters needed for successful inflation. Constraints on the parameter space leading to sufficient number of e-folds, exit from inflation, density perturbations and stabilization of the Kahler modulus are investigated. The conditions are difficult to satisfy in Klebanov-Strassler throats but can be satisfied in T^3 fibrations and other generic Calabi-Yau manifolds. This requires large volume and magnetic fluxes on the D-brane. The end of inflation may or may not lead to cosmic strings depending on the original non-BPS configuration. A careful investigation of initial conditions leading to a phenomenologically viable model for inflation is carried out. The initial conditions are chosen on the basis of Sen's open string completeness conjecture. We find time symmetrical bounce solutions without initial singularities for k=1 FRW models which are correlated with an inflationary period. Singular big-bang/big-crunch solutions also exist but do not lead to inflation. There is an intriguing correlation between having an inflationary universe in 4 dimensions and 6 compact dimensions or a big-crunch singularity and decompactification.Comment: 43 pages, 9 figures. v3: Typos correcte

    Multiple Inflation, Cosmic String Networks and the String Landscape

    Full text link
    Motivated by the string landscape we examine scenarios for which inflation is a two-step process, with a comparatively short inflationary epoch near the string scale and a longer period at a much lower energy (like the TeV scale). We quantify the number of ee-foldings of inflation which are required to yield successful inflation within this picture. The constraints are very sensitive to the equation of state during the epoch between the two inflationary periods, as the extra-horizon modes can come back inside the horizon and become reprocessed. We find that the number of ee-foldings during the first inflationary epoch can be as small as 12, but only if the inter-inflationary period is dominated by a network of cosmic strings (such as might be produced if the initial inflationary period is due to the brane-antibrane mechanism). In this case a further 20 ee-foldings of inflation would be required at lower energies to solve the late universe's flatness and horizon problems.Comment: 27 pages, 6 figures; v2: refences adde
    • 

    corecore