675 research outputs found

    Validating a UK geomagnetically induced current model using differential magnetometer measurements

    Get PDF
    Extreme space weather can damage ground-based infrastructure such as power lines, railways and gas pipelines through geomagnetically induced currents (GICs). Modeling GICs requires knowledge about the source magnetic field and the electrical conductivity structure of the Earth to calculate ground electric fields during enhanced geomagnetic activity. The electric field, in combination with detailed information about the power grid topology, enable the modeling of GICs in high-voltage (HV) power lines. Directly monitoring GICs in substations is possible with a Hall probe, but scarcely realized in the UK. Therefore we deployed the differential magnetometer method (DMM) to measure GICs at 12 sites in the UK power grid. The DMM includes the installation of two fluxgate magnetometers, one directly under a power line affected by GICs, and one as a remote site. The difference in recordings of the magnetic field at each instrument yields an estimate of the GICs in the respective power line segment via the Biot-Savart law. We collected data across the UK in 2018–2022, monitoring HV line segments where previous research indicated high GIC risk. We recorded magnetometer data during several smaller storms that allow detailed analysis of our GIC model. For the ground electric field computations we used recent magnetotelluric (MT) measurements recorded close to the DMM sites. Our results show that there is strong agreement in both amplitude and signal shape between measured and modeled line and substation GICs when using our HV model and the realistic electric field estimates derived from MT data

    Chiral Perturbation Theory and the f2(1270) resonance

    Get PDF
    Within Chiral Perturbation Theory, we study elastic pion scattering in the I=0, J=2, channel, whose main features are the f2(1270) resonance and the vanishing of the lowest order. By means of a chiral model that includes an explicit resonance coupled to pions, we describe the data and calculate the resonance contribution to the O(p^4) and O(p^6) chiral parameters. We also generalize the Inverse Amplitude Method to higher orders, which allows us to study channels with vanishing lowest order. In particular, we apply it to the I=0,J=2 case, finding a good description of the f2(1270) resonance, as a pole in the second Riemann sheet.Comment: 4 pages,1 figur

    Analysis of a quenched lattice-QCD dressed-quark propagator

    Full text link
    Quenched lattice-QCD data on the dressed-quark Schwinger function can be correlated with dressed-gluon data via a rainbow gap equation so long as that equation's kernel possesses enhancement at infrared momenta above that exhibited by the gluon alone. The required enhancement can be ascribed to a dressing of the quark-gluon vertex. The solutions of the rainbow gap equation exhibit dynamical chiral symmetry breaking and are consistent with confinement. The gap equation and related, symmetry-preserving ladder Bethe-Salpeter equation yield estimates for chiral and physical pion observables that suggest these quantities are materially underestimated in the quenched theory: |<bar-q q>| by a factor of two and f_pi by 30%.Comment: 9 pages, LaTeX2e, REVTEX4, 6 figure

    Commissioning of the CMS High Level Trigger

    Get PDF
    The CMS experiment will collect data from the proton-proton collisions delivered by the Large Hadron Collider (LHC) at a centre-of-mass energy up to 14 TeV. The CMS trigger system is designed to cope with unprecedented luminosities and LHC bunch-crossing rates up to 40 MHz. The unique CMS trigger architecture only employs two trigger levels. The Level-1 trigger is implemented using custom electronics, while the High Level Trigger (HLT) is based on software algorithms running on a large cluster of commercial processors, the Event Filter Farm. We present the major functionalities of the CMS High Level Trigger system as of the starting of LHC beams operations in September 2008. The validation of the HLT system in the online environment with Monte Carlo simulated data and its commissioning during cosmic rays data taking campaigns are discussed in detail. We conclude with the description of the HLT operations with the first circulating LHC beams before the incident occurred the 19th September 2008

    Four Light Neutrinos in Singular Seesaw Mechanism with Abelian Flavor Symmetry

    Get PDF
    The four light neutrino scenario, which explains the atmosphere, solar and LSND neutrino experiments, is studied in the framework of the seesaw mechanism. By taking both the Dirac and Majorana mass matrix of neutrinos to be singular, the four neutrino mass spectrum consisting of two almost degenerate pairs separated by a mass gap 1\sim 1 eV is naturally generated. Moreover the right-handed neutrino Majorana mass can be at 1014\sim 10^{14} GeV scale unlike in the usual singular seesaw mechanism. Abelian flavor symmetry is used to produce the required neutrino mass pattern. A specific example of the flavor charge assignment is provided to show that maximal mixings between the νμντ\nu_\mu-\nu_\tau and νeνs\nu_e-\nu_s are respectively attributed to the atmosphere and solar neutrino anomalies while small mixing between two pairs to the LSND results. The implication in the other fermion masses is also discussed.Comment: Firnal version to appear in PR

    Lepton Flavor Violating Process in Bi-maximal texture of Neutrino Mixings

    Get PDF
    We investigate the lepton flavor violation in the framework of the MSSM with right-handed neutrinos taking the large mixing angle MSW solution in the quasi-degenerate and the inverse-hierarchical neutrino masses. We predict the branching ratio of μe+γ\mu \to e+\gamma and τμ+γ\tau \to \mu+\gamma processes assuming the degenerate right-handed Majorana neutrino masses. We find that the branching ratio in the quasi-degenerate neutrino mass spectrum is 100 times smaller than the ones in the inverse-hierarchical and the hierarchical neutrino spectra. We emphasize that the magnitude of Ue3U_{e3} is one of important ingredients to predict BR(μe+γ\mu \to e +\gamma ). The effect of the deviation from the complete-degenerate right-handed Majorana neutrino masses are also estimated. Furtheremore, we examine the S_{3\sL}\times S_{3\sR} model, which gives the quasi-degenerate neutrino masses, and the Shafi-Tavartkiladze model, which gives the inverse-hierarchical neutrino masses. Both predicted branching ratios of μe+γ\mu\to e+\gamma are smaller than the experimantal bound.Comment: Latex file, 38 pages, 10 figures, revised versio

    Softening the Supersymmetric Flavor Problem in Orbifold GUTs

    Get PDF
    The infra-red attractive force of the bulk gauge interactions is applied to soften the supersymmetric flavor problem in the orbifold SU(5) GUT of Kawamura. Then this force aligns in the infra-red regime the soft supersymmetry breaking terms out of their anarchical disorder at a fundamental scale, in such a way that flavor-changing neutral currents as well as dangerous CP-violating phases are suppressed at low energies. It is found that this dynamical alignment is sufficiently good compared with the current experimental bounds, as long as the diagonalization matrices of the Yukawa couplings are CKM-like.Comment: 15 pages,4 figure
    corecore