776 research outputs found

    Studies of η\eta and ηâ€Č\eta' production in pppp and ppPb collisions

    Full text link
    The production of η\eta and ηâ€Č\eta' mesons is studied in proton-proton and proton-lead collisions collected with the LHCb detector. Proton-proton collisions are studied at center-of-mass energies of 5.025.02 and 13 TeV13~{\rm TeV}, and proton-lead collisions are studied at a center-of-mass energy per nucleon of 8.16 TeV8.16~{\rm TeV}. The studies are performed in center-of-mass rapidity regions 2.5<yc.m.<3.52.5<y_{\rm c.m.}<3.5 (forward rapidity) and −4.0<yc.m.<−3.0-4.0<y_{\rm c.m.}<-3.0 (backward rapidity) defined relative to the proton beam direction. The η\eta and ηâ€Č\eta' production cross sections are measured differentially as a function of transverse momentum for 1.5<pT<10 GeV1.5<p_{\rm T}<10~{\rm GeV} and 3<pT<10 GeV3<p_{\rm T}<10~{\rm GeV}, respectively. The differential cross sections are used to calculate nuclear modification factors. The nuclear modification factors for η\eta and ηâ€Č\eta' mesons agree at both forward and backward rapidity, showing no significant evidence of mass dependence. The differential cross sections of η\eta mesons are also used to calculate η/π0\eta/\pi^0 cross section ratios, which show evidence of a deviation from the world average. These studies offer new constraints on mass-dependent nuclear effects in heavy-ion collisions, as well as η\eta and ηâ€Č\eta' meson fragmentation.Comment: All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://lhcbproject.web.cern.ch/Publications/p/LHCb-PAPER-2023-030.html (LHCb public pages

    Amplitude analysis of the Λb0→pK−γ decay

    Get PDF
    The resonant structure of the radiative decay Λb0→pK−γ in the region of proton-kaon invariant-mass up to 2.5 GeV/c2 is studied using proton-proton collision data recorded at centre-of-mass energies of 7, 8, and 13 TeV collected with the LHCb detector, corresponding to a total integrated luminosity of 9 fb−1. Results are given in terms of fit and interference fractions between the different components contributing to this final state. Only Λ resonances decaying to pK− are found to be relevant, where the largest contributions stem from the Λ(1520), Λ(1600), Λ(1800), and Λ(1890) states

    Fraction of χc\chi_c decays in prompt J/ψJ/\psi production measured in pPb collisions at sNN=8.16\sqrt{s_{NN}}=8.16 TeV

    Get PDF
    The fraction of χc1\chi_{c1} and χc2\chi_{c2} decays in the prompt J/ψJ/\psi yield, Fχc=σχc→J/ψ/σJ/ψF_{\chi c}=\sigma_{\chi_c \to J/\psi}/\sigma_{J/\psi}, is measured by the LHCb detector in pPb collisions at sNN=8.16\sqrt{s_{NN}}=8.16 TeV. The study covers the forward (1.5<y∗<4.01.5<y^*<4.0) and backward (−5.0<y∗<−2.5-5.0<y^*<-2.5) rapidity regions, where y∗y^* is the J/ψJ/\psi rapidity in the nucleon-nucleon center-of-mass system. Forward and backward rapidity samples correspond to integrated luminosities of 13.6 ±\pm 0.3 nb−1^{-1} and 20.8 ±\pm 0.5 nb−1^{-1}, respectively. The result is presented as a function of the J/ψJ/\psi transverse momentum pT,J/ψp_{T,J/\psi} in the range 1<pT,J/ψ<20<p_{T, J/\psi}<20 GeV/cc. The FχcF_{\chi c} fraction at forward rapidity is compatible with the LHCb measurement performed in pppp collisions at s=7\sqrt{s}=7 TeV, whereas the result at backward rapidity is 2.4 σ\sigma larger than in the forward region for 1<pT,J/ψ<31<p_{T, J/\psi}<3 GeV/cc. The increase of FχcF_{\chi c} at low pT,J/ψp_{T, J/\psi} at backward rapidity is compatible with the suppression of the ψ\psi(2S) contribution to the prompt J/ψJ/\psi yield. The lack of in-medium dissociation of χc\chi_c states observed in this study sets an upper limit of 180 MeV on the free energy available in these pPb collisions to dissociate or inhibit charmonium state formation.Comment: All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2023-028.html (LHCb public pages

    Observation of the decays B(s)0→Ds1(2536)∓K±B_{(s)}^{0}\to D_{s1}(2536)^{\mp}K^{\pm}

    Full text link
    This paper reports the observation of the decays B(s)0→Ds1(2536)∓K±B_{(s)}^{0}\to D_{s1}(2536)^{\mp}K^{\pm} using proton-proton collision data collected by the LHCb experiment, corresponding to an integrated luminosity of 9 fb−19\,\mathrm{fb}^{-1}. The branching fractions of these decays are measured relative to the normalisation channel B0→D‟0K+K−B^{0}\to \overline{D}^{0}K^{+}K^{-}. The Ds1(2536)−D_{s1}(2536)^{-} meson is reconstructed in the D‟∗(2007)0K−\overline{D}^{*}(2007)^{0}K^{-} decay channel and the products of branching fractions are measured to be B(Bs0→Ds1(2536)∓K±)×B(Ds1(2536)−→D‟∗(2007)0K−)=(2.49±0.11±0.12±0.25±0.06)×10−5,\mathcal{B}(B_{s}^{0}\to D_{s1}(2536)^{\mp}K^{\pm})\times\mathcal{B}(D_{s1}(2536)^{-}\to\overline{D}^{*}(2007)^{0}K^{-})=(2.49\pm0.11\pm0.12\pm0.25\pm0.06)\times 10^{-5}, B(B0→Ds1(2536)∓K±)×B(Ds1(2536)−→D‟∗(2007)0K−)=(0.510±0.021±0.036±0.050)×10−5.\mathcal{B}(B^{0}\to D_{s1}(2536)^{\mp}K^{\pm})\times\mathcal{B}(D_{s1}(2536)^{-}\to\overline{D}^{*}(2007)^{0}K^{-}) = (0.510\pm0.021\pm0.036\pm0.050)\times 10^{-5}. The first uncertainty is statistical, the second systematic, and the third arises from the uncertainty of the branching fraction of the B0→D‟0K+K−B^{0}\to \overline{D}^{0}K^{+}K^{-} normalisation channel. The last uncertainty in the Bs0B_{s}^{0} result is due to the limited knowledge of the fragmentation fraction ratio, fs/fdf_{s}/f_{d}. The significance for the Bs0B_{s}^{0} and B0B^{0} signals is larger than 10 σ10\,\sigma. The ratio of the helicity amplitudes which governs the angular distribution of the Ds1(2536)−→D‟∗(2007)0K−D_{s1}(2536)^{-}\to\overline{D}^{*}(2007)^{0}K^{-} decay is determined from the data. The ratio of the SS- and DD-wave amplitudes is found to be 1.11±0.15±0.061.11\pm0.15\pm 0.06 and its phase 0.70±0.09±0.040.70\pm0.09\pm 0.04 rad, where the first uncertainty is statistical and the second systematic.Comment: All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2023-014.html (LHCb public pages

    Enhanced production of Λb0\Lambda_{b}^{0} baryons in high-multiplicity pppp collisions at s=13\sqrt{s} = 13 TeV

    Get PDF
    The production rate of Λb0\Lambda_{b}^{0} baryons relative to B0B^{0} mesons in pppp collisions at a center-of-mass energy s=13\sqrt{s} = 13 TeV is measured by the LHCb experiment. The ratio of Λb0\Lambda_{b}^{0} to B0B^{0} production cross-sections shows a significant dependence on both the transverse momentum and the measured charged-particle multiplicity. At low multiplicity, the ratio measured at LHCb is consistent with the value measured in e+e−e^{+}e^{-} collisions, and increases by a factor of ∌2\sim2 with increasing multiplicity. At relatively low transverse momentum, the ratio of Λb0\Lambda_{b}^{0} to B0B^{0} cross-sections is higher than what is measured in e+e−e^{+}e^{-} collisions, but converges with the e+e−e^{+}e^{-} ratio as the momentum increases. These results imply that the evolution of heavy bb quarks into final-state hadrons is influenced by the density of the hadronic environment produced in the collision. Comparisons with a statistical hadronization model and implications for the mechanisms enforcing quark confinement are discussed.Comment: All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2023-027.html (LHCb public pages

    Observation of strangeness enhancement with charmed mesons in high-multiplicity pPbp\mathrm{Pb} collisions at sNN=8.16 \sqrt {s_{\mathrm{NN}}}=8.16\,TeV

    Full text link
    The production of prompt Ds+D^+_{s} and D+D^+ mesons is measured by the LHCb experiment in proton-lead (pPbp\mathrm{Pb}) collisions in both the forward (1.5<y∗<4.01.5<y^*<4.0) and backward (−5.0<y∗<−2.5-5.0<y^*<-2.5) rapidity regions at a nucleon-nucleon center-of-mass energy of sNN=8.16 \sqrt {s_{\mathrm{NN}}}=8.16\,TeV. The nuclear modification factors of both Ds+D^+_{s} and D+D^+ mesons are determined as a function of transverse momentum, pTp_{\mathrm{T}}, and rapidity. In addition, the Ds+D^+_{s} to D+D^+ cross-section ratio is measured as a function of the charged particle multiplicity in the event. An enhanced Ds+D^+_{s} to D+D^+ production in high-multiplicity events is observed for the whole measured pTp_{\mathrm{T}} range, in particular at low pTp_{\mathrm{T}} and backward rapidity, where the significance exceeds six standard deviations. This constitutes the first observation of strangeness enhancement in charm quark hadronization in high-multiplicity pPbp\mathrm{Pb} collisions. The results are also qualitatively consistent with the presence of quark coalescence as an additional charm quark hadronization mechanism in high-multiplicity proton-lead collisions.Comment: All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2023-021.html (LHCb public pages

    Search for CP\textit{CP} violation in the phase space of D0→KS0K±π∓D^{0} \rightarrow K_{S}^{0} K^{\pm} \pi^{\mp} decays with the energy test

    Get PDF
    A search for CP\textit{CP} violation in D0→KS0K+π−D^{0} \rightarrow K_{S}^{0} K^{+} \pi^{-} and D0→KS0K−π+D^{0} \rightarrow K_{S}^{0} K^{-} \pi^{+} decays is reported. The search is performed using an unbinned model-independent method known as the energy test that probes local CP\textit{CP} violation in the phase space of the decays. The data analysed correspond to an integrated luminosity of 5.4 5.4~fb−1^{-1} collected in proton-proton collisions by the LHCb experiment at a centre-of-mass energy of s=13\sqrt{s}=13~TeV, amounting to approximately 950000 and 620000 signal candidates for the D0→KS0K−π+D^{0} \rightarrow K_{S}^{0} K^{-} \pi^{+} and D0→KS0K+π−D^{0} \rightarrow K_{S}^{0} K^{+} \pi^{-} modes, respectively. The method is validated using D0→K−π+π−π+D^{0} \rightarrow K^{-} \pi^{+} \pi^{-} \pi^{+} and D0→KS0π+π−D^{0} \rightarrow K_{S}^{0} \pi^{+} \pi^{-} decays, where CP\textit{CP}-violating effects are expected to be negligible, and using background-enhanced regions of the signal decays. The results are consistent with CP\textit{CP} symmetry in both the D0→KS0K−π+D^{0} \rightarrow K_{S}^{0} K^{-} \pi^{+} and the D0→KS0K+π−D^{0} \rightarrow K_{S}^{0} K^{+} \pi^{-} decays, with pp-values for the hypothesis of no CP\textit{CP} violation of 70% and 66%, respectively.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2023-019.html (LHCb public pages

    A measurement of ΔΓs\Delta \Gamma_{s}

    Full text link
    Using a dataset corresponding to 9 fb−19~\mathrm{fb}^{-1} of integrated luminosity collected with the LHCb detector between 2011 and 2018 in proton-proton collisions, the decay-time distributions of the decay modes Bs0→J/ψηâ€ČB_s^0 \rightarrow J/\psi \eta' and Bs0→J/ψπ+π−B_s^0 \rightarrow J/\psi \pi^{+} \pi^{-} are studied. The decay-width difference between the light and heavy mass eigenstates of the Bs0B_s^0 meson is measured to be ΔΓs=0.087±0.012±0.009 ps−1\Delta \Gamma_s = 0.087 \pm 0.012 \pm 0.009 \, \mathrm{ps}^{-1}, where the first uncertainty is statistical and the second systematic.Comment: All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2023-025.htm

    Helium identification with LHCb

    Get PDF
    The identification of helium nuclei at LHCb is achieved using a method based on measurements of ionisation losses in the silicon sensors and timing measurements in the Outer Tracker drift tubes. The background from photon conversions is reduced using the RICH detectors and an isolation requirement. The method is developed using pppp collision data at s=13 TeV\sqrt{s}=13\,{\rm TeV} recorded by the LHCb experiment in the years 2016 to 2018, corresponding to an integrated luminosity of 5.5 fb−15.5\,{\rm fb}^{-1}. A total of around 10510^5 helium and antihelium candidates are identified with negligible background contamination. The helium identification efficiency is estimated to be approximately 50%50\% with a corresponding background rejection rate of up to O(1012)\mathcal O(10^{12}). These results demonstrate the feasibility of a rich programme of measurements of QCD and astrophysics interest involving light nuclei.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-DP-2023-002.html (LHCb public pages

    Measurement of associated J/ψJ/\psi-ψ(2S)\psi(2S) production cross-section in pppp collisions at s=13\sqrt{s}=13 TeV

    Full text link
    The cross-section of associated J/ψJ/\psi-ψ(2S)\psi(2S) production in proton-proton collisions at a centre-of-mass energy of s=13\sqrt{s}=13 TeV is measured using a data sample corresponding to an integrated luminosity of 4.2 fb−1^{-1}, collected by the LHCb experiment. The measurement is performed for both J/ψJ/\psi and ψ(2S)\psi(2S) mesons having transverse momentum pT<14p_{\text{T}}<14 GeV/cc and rapidity 2.0<y<4.52.0<y<4.5, assuming negligible polarisation of the J/ψJ/\psi and ψ(2S)\psi(2S) mesons. The production cross-section is measured to be 4.5±0.7±0.34.5\pm0.7\pm0.3 nb, where the first uncertainty is statistical and the second systematic. The differential cross-sections are measured as functions of several kinematic variables of the J/ψJ/\psi-ψ(2S)\psi(2S) candidates. The results are combined with a measurement of J/ψJ/\psi-J/ψJ/\psi production, giving a cross-section ratio between J/ψJ/\psi-ψ(2S)\psi(2S) and J/ψJ/\psi-J/ψJ/\psi production of 0.274±0.044±0.0080.274\pm0.044\pm0.008, where the first uncertainty is statistical and the second systematic.Comment: All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2023-023.html (LHCb public pages
    • 

    corecore