58 research outputs found

    Blocking pathogen transmission at the source: reservoir targeted OspA-based vaccines against Borrelia burgdorferi

    Get PDF
    Control strategies are especially challenging for microbial diseases caused by pathogens that persist in wildlife reservoirs and use arthropod vectors to cycle amongst those species. One of the most relevant illnesses that pose a direct human health risk is Lyme disease; in the US, the Centers for Disease Control and Prevention (CDC) recently revised the probable number of cases by 10 fold, to 300,000 cases per year. Caused by Borrelia burgdorferi, Lyme disease can affect the nervous system, joints and heart. No human vaccine is approved by the Food and Drug Administration. In addition to novel human vaccines, new strategies for prevention of Lyme disease consist of pest management interventions, vector-targeted vaccines and reservoir-targeted vaccines. However, even the most efficacious human vaccines can not prevent Lyme disease expansion into other geographical areas. The other strategies aim indirectly at reducing tick density and at disrupting the transmission of B. burgdorferi by targeting one or more key elements that maintain the enzootic cycle: the reservoir host and/or the tick vector. Here, I provide a brief overview of the application of an OspA-based wildlife reservoir targeted vaccine aimed at reducing transmission of B. burgdorferi and present it as a strategy for reducing Lyme disease risk to humans

    Specific IgG3/IgG1 isotyping may further inform diagnosis of acute disease

    Get PDF
    The laborious microscopic agglutination test (MAT) is the gold standard serologic test for laboratory diagnosis of leptospirosis. We developed EIA based serologic assays using recombinant proteins (rLigA, rLigB, rLipL32) and whole-cell extracts from eight Leptospira serovars as antigen and assessed the diagnostic performance of the new assay within each class, against MAT positive (MAT+) human sera panels from Portugal/PT (n = 143) and Angola/AO (n = 100). We found that a combination of recombinant proteins rLigA, rLigB and rLipL32 correctly identified antigen-specific IgG from patients with clinical and laboratory confirmed leptospirosis (MAT+) with 92% sensitivity and ~ 97% specificity (AUC 0.974) in serum from the provinces of Luanda (LDA) and Huambo (HBO) in Angola. A combination of whole cell extracts of L. interrogans sv Copenhageni (LiC), L. kirschneri Mozdok (LkM), L. borgpetersenii Arborea (LbA) and L. biflexa Patoc (LbP) accurately identified patients with clinical and laboratory confirmed leptospirosis (MAT+) with 100% sensitivity and ~ 98% specificity for all provinces of Angola and Portugal (AUC: 0.997 for AO/LDA/HBO, 1.000 for AO/HLA, 0.999 for PT/AZ and 1.000 for PT/LIS). Interestingly, we found that MAT+ IgG+ serum from Angola had a significantly higher presence of IgD and that IgG3/IgG1 isotypes were significantly increased in the MAT+ IgG+ serum from Portugal. Given that IgM/IgD class and IgG3/IgG1 specific isotypes are produced in the earliest course of infection, immunoglobulin G isotyping may be used to inform diagnosis of acute leptospirosis. The speed, ease of use and accuracy of EIA tests make them excellent alternatives to the laborious and expensive MAT for screening acute infection in areas where circulating serovars of pathogenic Leptospira are well defined.publishersversionepub_ahead_of_prin

    Diagnosis of Human Leptospirosis in a Clinical Setting: Real-Time PCR High Resolution Melting Analysis for Detection of Leptospira at the Onset of Disease:

    Get PDF
    Currently, direct detection of Leptospira can be done in clinical laboratories by conventional and by real-time PCR (qRT-PCR). We tested a biobank of paired samples of serum and urine from the same patient (202 patients) presenting at the hospital in an area endemic for leptospirosis using qRT-PCR followed by high resolution melting (HRM) analysis. The results were compared with those obtained by conventional nested PCR and with the serologic gold standard microscopic agglutination test (MAT). Differences were resolved by sequencing. qRT-PCR-HRM was positive for 46 of the 202 patients (22.7%, accuracy 100%) which is consistent with known prevalence of leptospirosis in the Azores. MAT results were positive for 3 of the 46 patients (6.5%). Analysis of paired samples allowed us to identify the illness point at which patients presented at the hospital: onset, dissemination or excretion. The melting curve analysis of Leptospira species revealed that 60.9% (28/46) of patients were infected with L. interrogans and 39.1% (18/46) were infected with L. borgpetersenii, both endemic to the Azores. We validated the use of qRT-PCR-HRM for diagnosis of leptospirosis and for identification of the Leptospira species at the earliest onset of infection in a clinical setting, in less than 2 hours.publishersversionpublishe

    IFNγ production in peripheral blood of early Lyme disease patients to hLFAα(L) (aa326-345)

    Get PDF
    BACKGROUND: It has been proposed that outer surface protein A (OspA) of Borrelia burgdorferi sensu stricto contains a T helper 1 (Th1) cell epitope that could play a role in an autoimmune response to hLFA1. METHODS: We used two peptides, hLFAα(L) (aa326-345) and Borrelia burgdorferi OspAB31 (aa164-183), as stimulating antigens to measure Th1 proinflammatory IFNγ cytokine production in peripheral blood of Lyme disease patients presenting with EM without history of arthritis, as well as in peripheral blood of healthy individuals. RESULTS: IFNγ responses to hLFA1 peptide were observed in 11 of 19 Lyme disease patients and in 3 of 15 healthy controls. In contrast, only 2 of 19 of the Lyme disease patients and none of the controls responded to the homologous OspAB31 peptide. CONCLUSIONS: IFNγ was produced in response to stimulation with peptide hLFAα(L) (aa326-345) in peripheral blood of 58% of patients with early Lyme disease without signs of arthritis, as well as in peripheral blood of 20% of healthy individuals, but not in response to stimulation with the homologous OspAB31 (aa164-183) peptide (p < 0.05). Our results suggest that reactivity to the hLFA1 peptide in peripheral blood may be the result of T cell degeneracy

    Immune Response to Lactobacillus plantarum Expressing Borrelia burgdorferi OspA Is Modulated by the Lipid Modification of the Antigen

    Get PDF
    Over the past decade there has been increasing interest in the use of lactic acid bacteria as mucosal delivery vehicles for vaccine antigens, microbicides and therapeutics. We investigated the mechanism by which a mucosal vaccine based in recombinant lactic acid bacteria breaks the immunological tolerance of the gut in order to elicit a protective immune response.We analyzed how the lipid modification of OspA affects the localization of the antigen in our delivery vehicle using a number of biochemistry techniques. Furthermore, we examined how OspA-expressing L. plantarum breaks the oral tolerance of the gut by stimulating human intestinal epithelial cells, peripheral blood mononuclear cells and monocyte derived dendritic cells and measuring cytokine production. We show that the leader peptide of OspA targets the protein to the cell envelope of L. plantarum, and it is responsible for protein export across the membrane. Mutation of the lipidation site in OspA redirects protein localization within the cell envelope. Further, we show that lipidated-OspA-expressing L. plantarum does not induce secretion of the pro-inflammatory cytokine IL-8 by intestinal epithelial cells. In addition, it breaks oral tolerance of the gut via Th1/Th2 cell mediated immunity, as shown by the production of pro- and anti-inflammatory cytokines by human dendritic cells, and by the production of IgG2a and IgG1 antibodies, respectively.Lipid modification of OspA expressed in L. plantarum modulates the immune response to this antigen through a Th1/Th2 immune response

    Immunization with a Borrelia burgdorferi BB0172-Derived Peptide Protects Mice against Lyme Disease

    Get PDF
    Lyme disease is the most prevalent arthropod borne disease in the US and it is caused by the bacterial spirochete Borrelia burgdorferi (Bb), which is acquired through the bite of an infected Ixodes tick. Vaccine development efforts focused on the von Willebrand factor A domain of the borrelial protein BB0172 from which four peptides (A, B, C and D) were synthesized and conjugated to Keyhole Limpet Hemocyanin, formulated in Titer Max® adjuvant and used to immunize C3H/HeN mice subcutaneously at days 0, 14 and 21. Sera were collected to evaluate antibody responses and some mice were sacrificed for histopathology to evaluate vaccine safety. Twenty-eight days post-priming, protection was evaluated by needle inoculation of half the mice in each group with 103 Bb/mouse, whereas the rest were challenged with 105Bb/mouse. Eight weeks post-priming, another four groups of similarly immunized mice were challenged using infected ticks. In both experiments, twenty-one days post-challenge, the mice were sacrificed to determine antibody responses, bacterial burdens and conduct histopathology. Results showed that only mice immunized with peptide B were protected against challenge with Bb. In addition, compared to the other the treatment groups, peptide B-immunized mice showed very limited inflammation in the heart and joint tissues. Peptide B-specific antibody titers peaked at 8 weeks post-priming and surprisingly, the anti-peptide B antibodies did not cross-react with Bb lysates. These findings strongly suggest that peptide B is a promising candidate for the development of a new DIVA vaccine (Differentiate between Infected and Vaccinated Animals) for protection against Lyme disease.The open access fee for this work was funded through the Texas A&M University Open Access to Knowledge (OAK) Fund

    The Year That Shaped the Outcome of the Ospa Vaccine for Human Lyme Disease

    No full text
    The expansion of Lyme borreliosis endemic areas and the corresponding increase of disease incidence have opened the possibility for greater acceptance of a vaccine. In this perspective article, we discuss the discovery of outer surface protein A (OspA) of B. burgdorferi, and the subsequent pre-clinical testing and clinical trials of a recombinant OspA vaccine for human Lyme disease. We also discuss in detail the open public hearings of the FDA Lyme disease vaccine advisory panel held in 1998 where concerns of molecular mimicry induced autoimmunity to native OspA were raised, the limitations of those studies, and the current modifications of recombinant OspA to develop a multivalent subunit vaccine for Lyme disease

    Animal Models of Leptospirosis: Of Mice and Hamsters

    Get PDF
    International audiencePathogenic Leptospira sp. are spirochetal bacteria responsible for leptospirosis, an emerging worldwide zoonosis. These spirochetes are very successful pathogens that infect a wide range of hosts such as fish, reptiles, birds, marsupials, and mammals. Transmission occurs when chronically infected animals excrete live bacteria in their urine, contaminating the environment. Leptospira sp. enter their hosts through damaged skin and mucosa. Chronically infected rats and mice are asymptomatic and are considered as important reservoirs of the disease. Infected humans may develop either a flu-like, usually mild illness with or without chronic asymptotic renal colonization, or a severe acute disease with kidney, liver, and heart failure, potentially leading to death. Leptospirosis is an economic burden on society due to health-care costs related to elevated morbidity of humans and loss of animals of agricultural interest. There are no effective vaccines against leptospirosis. Leptospira sp. are difficult to genetically manipulate which delays the pace of research progress. In this review, we discuss in an historical perspective how animal models have contributed to further our knowledge of leptospirosis. Hamsters, guinea pigs, and gerbils have been instrumental to study the pathophysiology of acute lethal leptospirosis and the Leptospira sp. genes involved in virulence. Chronic renal colonization has been mostly studied using experimentally infected rats. A special emphasis will be placed on mouse models, long thought to be irrelevant since they survive lethal infection. However, mice have recently been shown to be good models of sublethal infection leading to chronic colonization. Furthermore, congenic and transgenic mice have proven essential to study how innate immune cells interact with the pathogen and to understand the role of the toll-like receptor 4, which is important to control Leptospira sp. load and disease. The use of inbred and transgenic mouse models opens up the field to the comprehensive study of immune responses to Leptospira sp. infection and subsequent pathophysiology of inflammation. It also allows for testing of drugs and vaccines in a biological system that can avail of a wealth of molecular tools that enable understanding of the mechanisms of action of protective vaccines

    Pre-treatment with Lactobacillus plantarum prevents severe pathogenesis in mice infected with Leptospira interrogans and may be associated with recruitment of myeloid cells

    No full text
    International audienceRecent estimates on global morbidity and mortality caused by Leptospirosis point to one million cases and almost 60,000 deaths a year worldwide, especially in resource poor countries. We analyzed how a commensal probiotic immunomodulator, Lactobacillus plantarum, affects Leptospira interrogans pathogenesis in a murine model of sub-lethal leptospirosis. We found that repeated oral pre-treatment of mice with live L. plantarum restored body weight to normal levels in mice infected with L. interrogans. Pre-treatment did not prevent L. interrogans access to the kidney but it affected the inflammatory response and it reduced histopathological signs of disease. Analysis of the immune cell profiles in lymphoid tissues of mice pre-treated with L. plantarum showed increased numbers of B cells as well as naïve and memory CD4+ helper T cell populations in uninfected mice that shifted towards increased numbers of effector CD4+ helper T in infected mice. CD8+ cytotoxic T cell profiles in pre-treated uninfected and infected mice mirrored the switch observed for CD4+ except that CD8+ memory T cells were not affected. In addition, pre-treatment led to increased populations of monocytes in lymphoid tissues of uninfected mice and to increased populations of macrophages in the same tissues of infected mice. Immunohistochemistry of kidney sections of pre-treated infected mice showed an enrichment of neutrophils and macrophages and a reduction of total leucocytes and T cells. Our results suggest that complex myeloid and T cell responses orchestrate the deployment of monocytes and other cells from lymphoid tissue and the recruitment of neutrophils and macrophages to the kidney, and that, the presence of these cells in the target organ may be associated with reductions in pathogenesis observed in infected mice treated with L. plantarum
    • …
    corecore