88 research outputs found

    Revealing potential functions of hypothetical proteins induced by genistein in the symbiosis island of Bradyrhizobium japonicum commercial strain SEMIA 5079 (= CPAC 15).

    Get PDF
    BACKGROUND: Bradyrhizobium japonicum strain SEMIA 5079 (= CPAC 15) is a nitrogen-fixing symbiont of soybean broadly used in commercial inoculants in Brazil. Its genome has about 50% of hypothetical (HP) protein-coding genes, many in the symbiosis island, raising questions about their putative role on the biological nitrogen fixation (BNF) process. This study aimed to infer functional roles to 15 HP genes localized in the symbiosis island of SEMIA 5079, and to analyze their expression in the presence of a nod-gene inducer. RESULTS: A workflow of bioinformatics tools/databases was established and allowed the functional annotation of the HP genes. Most were enzymes, including transferases in the biosynthetic pathways of cobalamin, amino acids and secondary metabolites that may help in saprophytic ability and stress tolerance, and hydrolases, that may be important for competitiveness, plant infection, and stress tolerance. Putative roles for other enzymes and transporters identified are discussed. Some HP proteins were specific to the genus Bradyrhizobium, others to specific host legumes, and the analysis of orthologues helped to predict roles in BNF. CONCLUSIONS: All 15 HP genes were induced by genistein and high induction was confirmed in five of them, suggesting major roles in the BNF process. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12866-022-02527-9

    Photobiomodulation reduces the cytokine storm syndrome associated with Covid-19 in the zebrafish model

    Get PDF
    Although the exact mechanism of the pathogenesis of COVID-19 is not fully understood, oxidative stress and the release of pro-inflammatory cytokines have been highlighted as playing a vital role in the pathogenesis of the disease. In this sense, alternative treatments are needed to reduce the inflammation caused by COVID-19. Therefore, this study aimed to investigate the potential effect of red PBM as an attractive therapy to downregulate the cytokine storm caused by COVID-19 from a zebrafish model. RT-PCR analyses and protein-protein interaction prediction among SARS-CoV-2 and Danio rerio proteins showed that rSpike was responsible for generating systemic inflammatory processes with significantly increased pro-inflammatory (il1b, il6, tnfa, and nfkbiab), oxidative stress (romo1) and energy metabolism (slc2a1a, coa1) mRNA markers, with a pattern like those observed in COVID-19 cases in humans. On the other hand, PBM treatment decreased the mRNA levels of these pro-inflammatory and oxidative stress markers compared with rSpike in various tissues, promoting an anti-inflammatory response. Conversely, PBM promotes cellular and tissue repair of injured tissues and significantly increases the survival rate of rSpike-inoculated individuals. Additionally, metabolomics analysis showed that the most impacted metabolic pathways between PBM and the rSpike-treated groups were related to steroid metabolism, immune system, and lipids metabolism. Together, our findings suggest that the inflammatory process is an incisive feature of COVID-19, and red PBM can be used as a novel therapeutic agent for COVID-19 by regulating the inflammatory response. Nevertheless, the need for more clinical trials remains, and there is a significant gap to overcome before clinical trials.publishedVersio
    corecore