35,960 research outputs found

    Conservation laws arising in the study of forward-forward Mean-Field Games

    Full text link
    We consider forward-forward Mean Field Game (MFG) models that arise in numerical approximations of stationary MFGs. First, we establish a link between these models and a class of hyperbolic conservation laws as well as certain nonlinear wave equations. Second, we investigate existence and long-time behavior of solutions for such models

    Equivalence classes for gauge theories

    Get PDF
    In this paper we go deep into the connection between duality and fields redefinition for general bilinear models involving the 1-form gauge field AA. A duality operator is fixed based on "gauge embedding" procedure. Dual models are shown to fit in equivalence classes of models with same fields redefinitions

    Plastic Deformation of 2D Crumpled Wires

    Full text link
    When a single long piece of elastic wire is injected trough channels into a confining two-dimensional cavity, a complex structure of hierarchical loops is formed. In the limit of maximum packing density, these structures are described by several scaling laws. In this paper it is investigated this packing process but using plastic wires which give origin to completely irreversible structures of different morphology. In particular, it is studied experimentally the plastic deformation from circular to oblate configurations of crumpled wires, obtained by the application of an axial strain. Among other things, it is shown that in spite of plasticity, irreversibility, and very large deformations, scaling is still observed.Comment: 5 pages, 6 figure

    Model inspired by population genetics to study fragmentation of brittle plates

    Full text link
    We use a model whose rules were inspired by population genetics, the random capability growth model, to describe the statistical details observed in experiments of fragmentation of brittle platelike objects, and in particular the existence of (i) composite scaling laws, (ii) small critical exponents \tau associated with the power-law fragment-size distribution, and (iii) the typical pattern of cracks. The proposed computer simulations do not require numerical solutions of the Newton's equations of motion, nor several additional assumptions normally used in discrete element models. The model is also able to predict some physical aspects which could be tested in new experiments of fragmentation of brittle systems.Comment: We have modified the text in order to make the description of the model more clear. One Figure (Figure 1) was introduced showing the steps of the dynamics of colonization. Twelve references were adde

    Lorentz symmetry breaking in the noncommutative Wess-Zumino model: One loop corrections

    Full text link
    In this paper we deal with the issue of Lorentz symmetry breaking in quantum field theories formulated in a non-commutative space-time. We show that, unlike in some recente analysis of quantum gravity effects, supersymmetry does not protect the theory from the large Lorentz violating effects arising from the loop corrections. We take advantage of the non-commutative Wess-Zumino model to illustrate this point.Comment: 9 pages, revtex4. Corrected references. Version published in PR
    • …
    corecore