30,759 research outputs found

    Lorentz symmetry breaking in the noncommutative Wess-Zumino model: One loop corrections

    Full text link
    In this paper we deal with the issue of Lorentz symmetry breaking in quantum field theories formulated in a non-commutative space-time. We show that, unlike in some recente analysis of quantum gravity effects, supersymmetry does not protect the theory from the large Lorentz violating effects arising from the loop corrections. We take advantage of the non-commutative Wess-Zumino model to illustrate this point.Comment: 9 pages, revtex4. Corrected references. Version published in PR

    On the Nonrelativistic Limit of the phi^4 Theory in 2+1 Dimensions

    Full text link
    We study the nonrelativistic limit of the quantum theory of a real scalar field with quartic self-interaction. The two body scattering amplitude is written in such way as to separate the contributions of high and low energy intermediary states. From this result and the two loop computation of the self energy correction, we determine an effective nonrelativistic action.Comment: 15 pages, 2 figures, revte

    Solution of the quantum harmonic oscillator plus a delta-function potential at the origin: The oddness of its even-parity solutions

    Full text link
    We derive the energy levels associated with the even-parity wave functions of the harmonic oscillator with an additional delta-function potential at the origin. Our results bring to the attention of students a non-trivial and analytical example of a modification of the usual harmonic oscillator potential, with emphasis on the modification of the boundary conditions at the origin. This problem calls the attention of the students to an inaccurate statement in quantum mechanics textbooks often found in the context of solution of the harmonic oscillator problem.Comment: 9 pages, 3 figure

    Conservation laws arising in the study of forward-forward Mean-Field Games

    Full text link
    We consider forward-forward Mean Field Game (MFG) models that arise in numerical approximations of stationary MFGs. First, we establish a link between these models and a class of hyperbolic conservation laws as well as certain nonlinear wave equations. Second, we investigate existence and long-time behavior of solutions for such models

    On the duality of three-dimensional superfield theories

    Full text link
    Within the superfield approach, we consider the duality between the supersymmetric Maxwell-Chern-Simons and self-dual theories in three spacetime dimensions. Using a gauge embedding method, we construct the dual theory to the self-dual model interacting with a matter superfield, which turns out to be not the Maxwell-Chern-Simons theory coupled to matter, but a more complicated model, with a ``restricted'' gauge invariance. We stress the difficulties in dualizing the self-dual field coupled to matter into a theory with complete gauge invariance. After that, we show that the duality, achieved between these two models at the tree level, also holds up to the lowest order quantum corrections.Comment: 18 pages,2 figures, revtex4, v2: corrected reference

    T-Duality in 2-D Integrable Models

    Full text link
    The non-conformal analog of abelian T-duality transformations relating pairs of axial and vector integrable models from the non abelian affine Toda family is constructed and studied in detail.Comment: 14 pages, Latex, v.2 misprints corrected, reference added, to appear in J. Phys.
    • …
    corecore