2,509 research outputs found

    Serum aspirin esterase is strongly associated with glucose and lipids in healthy subjects: different association patterns in subjects with type 2 diabetes mellitus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Aspirin esterase (AE) activity can account for part of aspirin pharmacokinetics in the circulation, possibly being associated with the impairment of aspirin effectiveness as an inhibitor of platelet aggregation.</p> <p>Aims</p> <p>The study was aimed at investigating the correlations of serum AE activity with cholinesterase (ChE) and metabolic variables in healthy subjects in comparison to subjects with type 2 diabetes mellitus (T2DM).</p> <p>Methods</p> <p>In cardiovascular disease-free T2DM subjects and healthy controls, the AE activity levels and/or the correlation patterns between AE and the other variables were analyzed.</p> <p>Results</p> <p>Neither AE nor ChE activities were higher in the subjects with T2DM. Serum AE activity strongly correlated with ChE as well as glucose/lipids variables such as total cholesterol and triglyceride in healthy subjects, while the correlations between AE and glucose/lipids variables were not present in T2DM subjects.</p> <p>Conclusions</p> <p>These data may reflect the pathophysiological changes between healthy and T2DM subjects. Our data may thus provide the basis for future studies to unravel the mechanisms.</p

    Electric Field-Tuned Topological Phase Transition in Ultra-Thin Na3Bi - Towards a Topological Transistor

    Full text link
    The electric field induced quantum phase transition from topological to conventional insulator has been proposed as the basis of a topological field effect transistor [1-4]. In this scheme an electric field can switch 'on' the ballistic flow of charge and spin along dissipationless edges of the two-dimensional (2D) quantum spin Hall insulator [5-9], and when 'off' is a conventional insulator with no conductive channels. Such as topological transistor is promising for low-energy logic circuits [4], which would necessitate electric field-switched materials with conventional and topological bandgaps much greater than room temperature, significantly greater than proposed to date [6-8]. Topological Dirac semimetals(TDS) are promising systems in which to look for topological field-effect switching, as they lie at the boundary between conventional and topological phases [3,10-16]. Here we use scanning probe microscopy/spectroscopy (STM/STS) and angle-resolved photoelectron spectroscopy (ARPES) to show that mono- and bilayer films of TDS Na3Bi [3,17] are 2D topological insulators with bulk bandgaps >400 meV in the absence of electric field. Upon application of electric field by doping with potassium or by close approach of the STM tip, the bandgap can be completely closed then re-opened with conventional gap greater than 100 meV. The large bandgaps in both the conventional and quantum spin Hall phases, much greater than the thermal energy kT = 25 meV at room temperature, suggest that ultrathin Na3Bi is suitable for room temperature topological transistor operation

    Determinants on an efficient cellulase recycling process for the production of bioethanol from recycled paper sludge under high solid loadings

    Get PDF
    Background: In spite of the continuous efforts and investments in the last decades, lignocellulosic ethanol is still not economically competitive with fossil fuels. Optimization is still required in different parts of the process. Namely, the cost effective usage of enzymes has been pursued by different strategies, one of them being recycling. Results: Cellulase recycling was analyzed on Recycled Paper Sludge (RPS) conversion into bioethanol under intensified conditions. Different cocktails were studied regarding thermostability, hydrolysis efficiency, distribution in the multiphasic system and recovery from solid. Celluclast showed inferior stability at higher temperatures (45-55 ºC), nevertheless its performance at moderate temperatures (40ºC) was slightly superior to other cocktails (ACCELLERASE®1500 and Cellic®CTec2). Celluclast distribution in the solid-liquid medium was also more favorable, enabling to recover 88 % of final activity at the end of the process. A Central Composite Design studied the influence of solids concentration and enzyme dosage on RPS conversion by Celluclast. Solids concentration showed a significant positive effect on glucose production, no major limitations being found from utilizing high amounts of solids under the studied conditions. Increasing enzyme loading from 20 to 30 FPU/ gcellulose had no significant effect on sugars production, suggesting that 22 % solids and 20 FPU/gcellulose are the best operational conditions towards an intensified process. Applying these, a system of multiple rounds of hydrolysis with enzyme recycling was implemented, allowing to maintain steady levels of enzyme activity with only 50 % of enzyme on each recycling stage. Additionally, interesting levels of solid conversion (70-81 %) were also achieved, leading to considerable improvements on glucose and ethanol production comparatively with the reports available so far (3.4 and 3.8 fold, respectively). Conclusions: Enzyme recycling viability depends on enzyme distribution between the solid and liquid phases at the end of hydrolysis, as well as enzymes thermostability. Both are critical features to be observed for a judicious choice of enzyme cocktail. This work demonstrates that enzyme recycling in intensified biomass degradation can be achieved through simple means. The process is possibly much more effective at larger scale, hence novel enzyme formulations favoring this possibility should be developed for industrial usage.This work had the fnancial support of the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/ BIO/04469/2013 unit, COMPETE 2020 (POCI-01-0145-FEDER-006684) and the MultiBiorefnery project (POCI-01-0145-FEDER-016403). Furthermore, FCT equally supported the Ph.D. grant to DG (SFRH/BD/88623/2012).info:eu-repo/semantics/publishedVersio

    Teoria x Prática: Panorama inicial sobre a inserção das Tecnologias Digitais no Ensino Superior presencial e a distância na UFSM/ Theory x Practice: An initial overview of the insertion of digital technologies into classroom and distance higher education at UFSM

    Get PDF
    A inserção das Tecnologias Digitais de Comunicação e Informação no Ensino Superior é consolidada? Este estudo tem como objetivo investigar as tecnologias como metodologias de ensino, bem como as dicotomias no âmbito educacional no Ensino Superior presencial e a distância em dois cursos de licenciatura da Universidade Federal de Santa Maria: no Programa Especial de Graduação de Professores e no curso de Letras - Espanhol respectivamente. Para isso, optou-se por um estudo de multicasos, de caráter empírico e de natureza quali-quantitativa. Os resultados apontaram para a significância do uso das TDCI nos dois cursos analisados. Entretanto, tendo em vista as metodologias de ensino, foi possível perceber que é necessário um maior movimento no sentido de implantar ações tecnológicas como parte do processo de ensino-aprendizagem nos cursos de licenciatura
    corecore