25 research outputs found

    PLZF targets developmental enhancers for activation during osteogenic differentiation of human mesenchymal stem cells

    Get PDF
    The PLZF transcription factor is essential for osteogenic differentiation of hMSCs; however, its regulation and molecular function during this process is not fully understood. Here, we revealed that the ZBTB16 locus encoding PLZF, is repressed by Polycomb (PcG) and H3K27me3 in naive hMSCs. At the pre-osteoblast stage of differentiation, the locus lost PcG binding and H3K27me3, gained JMJD3 recruitment, and H3K27ac resulting in high expression of PLZF. Subsequently, PLZF was recruited to osteogenic enhancers, influencing H3K27 acetylation and expression of nearby genes important for osteogenic function. Furthermore, we identified a latent enhancer within the ZBTB16/PLZF locus itself that became active, gained PLZF, p300 and Mediator binding and looped to the promoter of the nicotinamide N-methyltransferase (NNMT) gene. The increased expression of NNMT correlated with a decline in SAM levels, which is dependent on PLZF and is required for osteogenic differentiatio

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time, and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space. While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes, vast areas of the tropics remain understudied. In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity, but it remains among the least known forests in America and is often underrepresented in biodiversity databases. To worsen this situation, human-induced modifications may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge, it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost

    Impact of oil type and WPI/Tween 80 ratio at the oil-water interface: adsorption, interfacial rheology and emulsion features

    No full text
    The relationship between the composition and structure of food emulsions was evaluated from the effect of a mixture of emulsifiers Whey protein (WPI) - Tween 80 (T80) and the oil phase features, such as chain length and unsaturation degree (sunflower oil, a long chain triacylglycerol - LCT or NEOBEE® 1053, a medium chain triacylglycerol - MCT). Emulsions with LCT showed higher droplet size than MCT as a consequence of its higher viscosity. All emulsions exhibited shear thinning behavior, but the viscosity was influenced by their interface composition. An occurrence of the destabilization mechanism by creaming was observed in turbidimetric measurements, but no visual phase separation could be observed, indicating a good kinetic stability after a 7-day storage. The initial interfacial tension of the water-LCT or water-MCT oil was about 25 mN/m, but the WPI addition (1% w/w) reduced the initial interfacial tension to approximately 20 mN/m. The increase of T80 concentration led to a decrease of the interfacial tension, reaching a value around 10 mN/m in systems with pure T80. The curves of interfacial tension of systems with LCT or MCT showed differences in the decay rate of tension over time. These differences were attributed to characteristics of the oil phase (hydrophobicity, unsaturation degree, presence of impurities) and the different proportions of each emulsifier within the mixture of emulsifiers. Finally, a higher viscoelastic interface was observed in LCT emulsions, which were mainly stabilized by WPI molecules. Such molecules presented a higher resistance to the displacement due to the competitive adsorption phenomenon, since the LCT is a more hydrophobic oil. On the other hand, the interface with MCT and a higher T80 concentration was less viscoelastic due to an easier displacement of WPI from the interface and the replacement by T80. The results indicate that T80 can be used in combination with WPI to produce emulsions with good stability and lower concentration of synthetic compounds. Lastly, the interfacial layer composition is not only dependent on the WPI-T80 ratio in the bulk phase, but also on the oily phase features. These results provide a potential strategy for designing emulsified foods based on the choice of ingredients and knowledge of the interaction between them.164272280CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQCOORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPSem informação140705/2015-5; 140710/2015-9; 307168/2016-62007/58017-5; 2011/06083-

    One-step ultrasound producing O/W emulsions stabilized by chitosan particles

    No full text
    Deprotonated chitosan nanoparticles have shown a potential to act as a food-grade particle stabilizer of oil-in-water (O/W) Pickering emulsions. The effect of one-step emulsification conditions using ultrasonic device was studied changing time and ultrasonication (US) power. The physicochemical properties of chitosan particles and O/W Pickering emulsions produced at the same time from different process conditions were evaluated. The surface activity of chitosan particles was evidenced with the reduction of interfacial tension between oil-water phases. This behavior was associated to the great capacity of hydrophobic groups acting onto the interface during the ultrasonic emulsification. The combined intensification of time and US power also led to an increase of hydrophobicity and polydispersity, changes in zeta potential and reduction on size of chitosan particles. At higher US power, the decrease of droplet size favored the interaction between oil droplets through weak attractive forces and particles sharing (bridging flocculation) leading to an increase in viscosity of emulsions. Thus, the major finding of this work was to elucidate the emulsion stability mechanism by deprotonated chitosan particles, which was associated to an increase of their hydrophobicity and the formation of a droplet network structure. In addition, a one-step homogenization could be performed allowing to produce these emulsions using less energy and process time.107717725CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQCOORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPSem informação140710/2015-9; 140705/2015-5; 305477/2012-92007/58017-5; 2011/06083-

    Coupling of high-intensity ultrasound and mechanical stirring for producing food emulsions at low-energy densities

    No full text
    In this study, coupling of ultrasound (US) device and rotor-stator (RS), operating at low-energy densities, was studied as an alternative process to individual US and RS to produce modified starch-stabilized oil-in-water emulsions, as well as its potential use to encapsulate eugenol. To this aim, a full factorial design was employed to evaluate the effects of the US nominal power (0, 360 and 720 W) and RS nominal power (0, 150 and 300 W) on the physical properties, encapsulation efficiency and kinetic stability of emulsions produced. Firstly, the action of modified starch and eugenol onto interface oil-water was evaluated. The emulsifier was rapidly adsorbed on the interface water-sunflower oil reducing the interfacial tension from 25 to 16 mN/m, while eugenol did not show surface activity. The increase of energy density, in general, resulted in droplet size reduction, indicating the relevant role of the forces involved in the droplet breakup on emulsion stability. Coupling was more efficient on the droplets breakup producing smaller droplet size with narrower size distribution. While the coupled system work during 5 min for an energy density of 583 J/mL, the corresponding emulsification time for operating singly US and RS were 7.09 min and 17.04 min, respectively. Therefore, the main advantage associate to coupled process is the reduction of processing time to produce an emulsion with better kinetic stability.47114121CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESP140710/2015-9; 140705/2015-5; 302423/2015-0; 305477/2012-92015/22226-6; 2017/11641-8; 2007/58017-5; 2009/54137-
    corecore