34 research outputs found

    Asymmetric Properties of Heart Rate Variability to Assess Operator Fatigue

    Get PDF
    The aim of this study is to evaluate the suitability of heart rate recordings for establishing a reliable connection to well-defined fatigue and performance measures in order to estimate fatigue in industrial and transportation applications. An overnight driving simulation scenario with partial sleep deprivation was utilized to induce strong fatigue. An experiment trial was divided into repeated sessions, each of which consisted of a driving performance and two vigilance tasks. Heart rate (HR) was recorded over the entire experiment; HRmeasures were derived and correlated against measures that were established from driving and vigilance task performance and that represent various aspects of operator fatigue. In a previous report (Hefner et al. 2009) we presented on the basis of the data of one volunteer that multiple fatigue measures correlate well with different expressions of heart rate variability (HRV), especially with longterm HRV derived from Poincaré plots. In this work, we intensify the Poincaré analysis by dividing the distribution of HR data in different accelerating and decelerating segments and by establishing properties of asymmetry between these segments. We also show that most of the properties of long-term HRV correlate well with specific fatigue measures for a group of 5 volunteers despite their large inter-individual differences in HR-to-fatigue correlations

    Ballistic transport and surface scattering in (In,Ga)As-InP heterostructure narrow channels

    Get PDF
    Narrow conduction channels are fabricated from an In0.75Ga0.25As-InP heterostructure using electron-beam lithography and dry etching. The etched surface is realized to be smooth by employing a reactive ion etching. The etching-induced surface conduction is eliminated by removing the damaged surface layer using a diluted HCl solution. The negligible surface depletion for the In-rich quantum well enables to create conducting channels in arbitrary geometries such as in a circular shape. We evidence the presence of a ballistic contribution in the electron transport by demonstrating a rectification of rf excitations that is achieved by the magnetic-field-tuned transmission asymmetry in the circularly-shaped channels. The absence of the surface depletion is shown to cause, on the other hand, a surface scattering for the electrons confined in the channels. An increase of the resistance, including its anomalous enhancement at low temperatures, is induced by the gas molecules attached to the sidewalls of the channels. We also report a large persistent photoconduction, which occurs as a parallel conduction in the undoped InP barrier layer.Peer Reviewe

    Long short-term memory training for the assessment of vigilance

    Get PDF
    The assessment of vigilance is of increasing importance within our 24/7 working society. Posturography is one candidate for a quick, mobile and cost-efficient vigilance assessment. Nevertheless classification accuracy is yet insufficient. This contribution aims at improving classification accuracy of posturographical vigilance assessment by utilizing the information hidden within temporal dynamics of feature sequences. For this purpose a Recurrent Neural Network, Long Short-Term Memory (LSTM), is applied. In order to evaluate whether temporal dynamics offer additional information, results from LSTM training are compared to non-recurrent approaches. Results indicate that there is no significant gain in accuracy achieved by learning temporal dynamics

    Plasma-assisted molecular beam epitaxy of SnO(001) films: Metastability, hole transport properties, Seebeck coefficient, and effective hole mass

    Full text link
    Transparent conducting or semiconducting oxides are important materials for (transparent) optoelectronics and power electronics applications. While most of these oxides can be doped n-type only with room-temperature electron mobilities on the order of 100cm^2/Vs p-type oxides are needed for the realization of pn-junction devices but typically suffer from exessively low (<<1cm^2/Vs) hole mobilities. Tin monoxide (SnO) is one of the few p-type oxides with a higher hole mobility, lacking a well-established understanding of its hole transport properties. Moreover, growth of SnO is complicated by its metastability with respect to SnO2 and Sn, requiring epitaxy for the realization of single crystalline material typically required for high-end applications. Here, we give a comprehensive account on the epitaxial growth of SnO, its (meta)stability, and its thermoelectric transport properties in the context of the present literature. Textured and single-crystalline, unintentionally-doped p-type SnO(001) films are grown by plasma-assisted molecular beam epitaxy. The metastability of this semiconducting oxide is addressed theoretically through an equilibrium phase diagram. Experimentally, the related SnO growth window is rapidly determined by an in-situ growth kinetics study as function of Sn-to-O-plasma flux ratio and growth temperature. The presence of secondary Sn and SnOx (1 < x <= 2) phases is comprehensively studied by different methods, indicating the presence of Sn3O4 or Sn as major secondary phases, as well as a fully oxidized SnO2 film surface. The hole transport properties, Seebeck coefficient, and density-of-states effective mass are determined and critically discussed in the context of the present literature on SnO, considering its anisotropic hole-effective mass

    Selective Growth of GaP Crystals on CMOS-Compatible Si Nanotip Wafers by Gas Source Molecular Beam Epitaxy

    Get PDF
    Gallium phosphide (GaP) is a III–V semiconductor with remarkable optoelectronic properties, and it has almost the same lattice constant as silicon (Si). However, to date, the monolithic and large-scale integration of GaP devices with silicon remains challenging. In this study, we present a nanoheteroepitaxy approach using gas-source molecular-beam epitaxy for selective growth of GaP islands on Si nanotips, which were fabricated using complementary metal–oxide semiconductor (CMOS) technology on a 200 mm n-type Si(001) wafer. Our results show that GaP islands with sizes on the order of hundreds of nanometers can be successfully grown on CMOS-compatible wafers. These islands exhibit a zinc-blende phase and possess optoelectronic properties similar to those of a high-quality epitaxial GaP layer. This result marks a notable advancement in the seamless integration of GaP-based devices with high scalability into Si nanotechnology and integrated optoelectronics.Deutsche Forschungsgemeinschaft 10.13039/501100001659European Commission 10.13039/501100008530Peer Reviewe

    The role of mechanotransduction versus hypoxia during simulated orthodontic compressive strain—an in vitro study of human periodontal ligament fibroblasts

    Get PDF
    During orthodontic tooth movement (OTM) mechanical forces trigger pseudo-inflammatory, osteoclastogenic and remodelling processes in the periodontal ligament (PDL) that are mediated by PDL fibroblasts via the expression of various signalling molecules. Thus far, it is unknown whether these processes are mainly induced by mechanical cellular deformation (mechanotransduction) or by concomitant hypoxic conditions via the compression of periodontal blood vessels. Human primary PDL fibroblasts were randomly seeded in conventional six-well cell culture plates with O-2-impermeable polystyrene membranes and in special plates with gas-permeable membranes (Lumox (R), Sarstedt), enabling the experimental separation of mechanotransducive and hypoxic effects that occur concomitantly during OTM. To simulate physiological orthodontic compressive forces, PDL fibroblasts were stimulated mechanically at 2 g.cm(-2) for 48 h after 24 h of pre-incubation. We quantified the cell viability by MTT assay, gene expression by quantitative real-time polymerase chain reaction (RT-qPCR) and protein expression by western blot/enzyme-linked immunosorbent assays (ELISA). In addition, PDL-fibroblast-mediated osteoclastogenesis (TRAP(+) cells) was measured in a 72-h coculture with RAW264.7 cells. The expression of HIF-1 alpha, COX-2, PGE2, VEGF, COL1A2, collagen and ALPL, and the RANKL/OPG ratios at the mRNA/protein levels during PDL-fibroblast-mediated osteoclastogenesis were significantly elevated by mechanical loading irrespective of the oxygen supply, whereas hypoxic conditions had no significant additional effects. The cellular-molecular mediation of OTM by PDL fibroblasts via the expression of various signalling molecules is expected to be predominantly controlled by the application of force (mechanotransduction), whereas hypoxic effects seem to play only a minor role. In the context of OTM, the hypoxic marker HIF-1 alpha does not appear to be primarily stabilized by a reduced O-2 supply but is rather stabilised mechanically

    Circadian rhythmicity of cognitive performance

    No full text
    It was investigated whether cognitive performance shows a circadian rhythm during a 50 h-long forced desynchrony sleep-wake-schedule. We asked whether it would be possible to estimate the circadian period of cognitive performance under such circumstances and how strong it correlates to subjective sleepiness rating as well as body temperature

    Oral Bioavailability and Metabolism of Hydroxytyrosol from Food Supplements

    Get PDF
    Table olives and olive oils are the main dietary sources of hydroxytyrosol (HT), a natural antioxidant compound that has emerged as a potential aid in protection against cardiovascular risk. Bioavailability studies with olive oils showed that HT is bioavailable from its free form and from conjugated forms such as oleuropein and its aglycone. Still, its low dietary intake, poor bioavailability, and high inter-individual variability after absorption through the gastrointestinal tract hamper its full benefits. In a randomized, controlled, blinded, cross-over study, we investigated the impact of HT metabolism and bioavailability by comparing two olive-derived watery supplements containing different doses of HT (30.58 and 61.48 mg of HT/dosage). Additionally, HT-fortified olive oil was used in the control group. To this aim, plasma and urine samples were evaluated in 12 healthy volunteers following the intake of a single dose of the supplements or fortified olive oil. Blood and urine samples were collected at baseline and at 0.5, 1, 1.5, 2, 4, and 12 h after intake. HT and its metabolites were analyzed using UHPLC-DAD-MS/MS. Pharmacokinetic results showed that dietary HT administered through the food supplements is bioavailable and bioavailability increases with the administered dose. After intake, homovanillic acid, HT-3-O-sulphate, and 3,4-dihydroxyphenylacetic acid are the main metabolites found both in plasma and urine. The maximum concentrations in plasma peaked 30 min after intake. As bioavailability of a compound is a fundamental prerequisite for its effect, these results promise a good potential of both food supplements for protection against oxidative stress and the consequent cardiovascular risk.Peer Reviewe

    Oral Bioavailability and Metabolism of Hydroxytyrosol from Food Supplements

    Get PDF
    Table olives and olive oils are the main dietary sources of hydroxytyrosol (HT), a natural antioxidant compound that has emerged as a potential aid in protection against cardiovascular risk. Bioavailability studies with olive oils showed that HT is bioavailable from its free form and from conjugated forms such as oleuropein and its aglycone. Still, its low dietary intake, poor bioavailability, and high inter-individual variability after absorption through the gastrointestinal tract hamper its full benefits. In a randomized, controlled, blinded, cross-over study, we investigated the impact of HT metabolism and bioavailability by comparing two olive-derived watery supplements containing different doses of HT (30.58 and 61.48 mg of HT/dosage). Additionally, HT-fortified olive oil was used in the control group. To this aim, plasma and urine samples were evaluated in 12 healthy volunteers following the intake of a single dose of the supplements or fortified olive oil. Blood and urine samples were collected at baseline and at 0.5, 1, 1.5, 2, 4, and 12 h after intake. HT and its metabolites were analyzed using UHPLC-DAD-MS/MS. Pharmacokinetic results showed that dietary HT administered through the food supplements is bioavailable and bioavailability increases with the administered dose. After intake, homovanillic acid, HT-3-O-sulphate, and 3,4-dihydroxyphenylacetic acid are the main metabolites found both in plasma and urine. The maximum concentrations in plasma peaked 30 min after intake. As bioavailability of a compound is a fundamental prerequisite for its effect, these results promise a good potential of both food supplements for protection against oxidative stress and the consequent cardiovascular risk
    corecore