156 research outputs found

    Differential Protein Expression During Growth on Medium Versus Long-Chain Alkanes in the Obligate Marine Hydrocarbon-Degrading Bacterium Thalassolituus oleivorans MIL-1

    Get PDF
    The marine obligate hydrocarbonoclastic bacterium Thalassolituus oleivorans MIL-1 metabolizes a broad range of aliphatic hydrocarbons almost exclusively as carbon and energy sources. We used LC-MS/MS shotgun proteomics to identify proteins involved in aerobic alkane degradation during growth on medium- (n-C14) or long-chain (n-C28) alkanes. During growth on n-C14, T. oleivorans expresses an alkane monooxygenase system involved in terminal oxidation including two alkane 1-monooxygenases, a ferredoxin, a ferredoxin reductase and an aldehyde dehydrogenase. In contrast, during growth on long-chain alkanes (n-C28), T. oleivorans may switch to a subterminal alkane oxidation pathway evidenced by significant upregulation of Baeyer-Villiger monooxygenase and an esterase, proteins catalyzing ketone and ester metabolism, respectively. The metabolite (primary alcohol) generated from terminal oxidation of an alkane was detected during growth on n-C14 but not on n-C28 also suggesting alternative metabolic pathways. Expression of both active and passive transport systems involved in uptake of long-chain alkanes was higher when compared to the non-hydrocarbon control, including a TonB-dependent receptor, a FadL homolog and a specialized porin. Also, an inner membrane transport protein involved in the export of an outer membrane protein was expressed. This study has demonstrated the substrate range of T. oleivorans is larger than previously reported with growth from n-C10 up to n-C32. It has also greatly enhanced our understanding of the fundamental physiology of T. oleivorans, a key bacterium that plays a significant role in natural attenuation of marine oil pollution, by identifying key enzymes expressed during the catabolism of n-alkanes

    Protein expression in the obligate hydrocarbon‐degrading psychrophile Oleispira antarctica RB‐8 during alkane degradation and cold tolerance

    Get PDF
    In cold marine environments, the obligate hydrocarbon‐degrading psychrophile Oleispira antarctica RB‐8, which utilizes aliphatic alkanes almost exclusively as substrates, dominates microbial communities following oil spills. In this study, LC–MS/MS shotgun proteomics was used to identify changes in the proteome induced during growth on n‐alkanes and in cold temperatures. Specifically, proteins with significantly higher relative abundance during growth on tetradecane (n‐C14) at 16°C and 4°C have been quantified. During growth on n‐C14, O. antarctica expressed a complete pathway for the terminal oxidation of n‐alkanes including two alkane monooxygenases, two alcohol dehydrogenases, two aldehyde dehydrogenases, a fatty‐acid‐CoA ligase, a fatty acid desaturase and associated oxidoreductases. Increased biosynthesis of these proteins ranged from 3‐ to 21‐fold compared with growth on a non‐hydrocarbon control. This study also highlights mechanisms O. antarctica may utilize to provide it with ecological competitiveness at low temperatures. This was evidenced by an increase in spectral counts for proteins involved in flagella structure/output to overcome higher viscosity, flagella rotation to accumulate cells and proline metabolism to counteract oxidative stress, during growth at 4°C compared with 16°C. Such species‐specific understanding of the physiology during hydrocarbon degradation can be important for parameterizing models that predict the fate of marine oil spills

    Microbial uptake kinetics of dissolved organic carbon (DOC) compound groups from river water and sediments

    Get PDF
    Dissolved organic matter (DOM) represents a key component of carbon (C) cycling in freshwater ecosystems. While the behaviour of bulk dissolved organic carbon (DOC) in aquatic ecosystems is well studied, comparatively little is known about the turnover of specific DOC compounds. The aim of this study was to investigate the persistence of 14C-labelled low molecular weight (LMW) DOC at a wide range of concentrations (0.1 ”M to 10 mM), in sediments and waters from oligotrophic and mesotrophic rivers within the same catchment. Overall, rates of DOC loss varied between compound groups (amino acids > sugars = organic acids > phenolics). Sediment-based microbial communities contributed to higher DOC loss from river waters, which was attributed, in part, to its greater microbial biomass. At higher DOC compound concentrations, DOC loss was greater in mesotrophic rivers in comparison to oligotrophic headwaters. A lag-phase in substrate use within sediments provided evidence of microbial growth and adaptation, ascribed here to the lack of inorganic nutrient limitation on microbial C processing in mesotrophic communities. We conclude that the higher microbial biomass and available inorganic nutrients in sediments enables the rapid processing of LMW DOC, particularly during high C enrichment events and in N and P-rich mesotrophic environments

    Isolation and characterization of novel lipases/esterases from a bovine rumen metagenome

    Get PDF
    Improving the health beneficial fatty acid content of meat and milk is a major challenge requiring an increased understanding of rumen lipid metabolism. In this study, we isolated and characterized rumen bacterial lipases/esterases using functional metagenomics. Metagenomic libraries were constructed from DNA extracted from strained rumen fluid (SRF), solid-attached bacteria (SAB) and liquid-associated rumen bacteria (LAB), ligated into a fosmid vector and subsequently transformed into an Escherichia coli host. Fosmid libraries consisted of 7,744; 8,448; and 7,680 clones with an average insert size of 30 to 35 kbp for SRF, SAB and LAB, respectively. Transformants were screened on spirit blue agar plates containing tributyrin for lipase/esterase activity. Five SAB and four LAB clones exhibited lipolytic activity, and no positive clones were found in the SRF library. Fosmids from positive clones were pyrosequenced and twelve putative lipase/esterase genes and two phospholipase genes retrieved. Although the derived proteins clustered into diverse esterase and lipase families, a degree of novelty was seen, with homology ranging from 40 to 78 % following BlastP searches. Isolated lipases/esterases exhibited activity against mostly short- to medium-chain substrates across a range of temperatures and pH. The function of these novel enzymes recovered in ruminal metabolism needs further investigation, alongside their potential industrial uses. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00253-014-6355-6) contains supplementary material, which is available to authorized users

    Rational Engineering of Multiple Active Sites in an Ester Hydrolase

    Get PDF
    Effects of altering the properties of an active site in an enzymatic homogeneous catalyst have been extensively reported. However, the possibility of increasing the number of such sites, as commonly done in heterogeneous catalytic materials, remains unexplored, particularly because those have to accommodate appropriate residues in specific configurations. This possibility was investigated by using a serine ester hydrolase as the target enzyme. By using the Protein Energy Landscape Exploration software, which maps ligand diffusion and binding, we found a potential binding pocket capable of holding an extra catalytic triad and oxyanion hole contacts. By introducing two mutations, this binding pocket became a catalytic site. Its substrate specificity, substrate preference, and catalytic activity were different from those of the native site of the wild type ester hydrolase and other hydrolases, due to the differences in the active site architecture. Converting the binding pocket into an extra catalytic active site was proven to be a successful approach to create a serine ester hydrolase with two functional reactive groups. Our results illustrate the accuracy and predictive nature of modern modeling techniques, opening novel catalytic opportunities coming from the presence of different catalytic environments in single enzymes

    Sulfur Respiration in a Group of Facultatively Anaerobic Natronoarchaea Ubiquitous in Hypersaline Soda Lakes

    Get PDF
    The ubiquity of strictly anaerobic sulfur-respiring haloarchaea in hypersaline systems with circumneutral pH has shaken a traditional concept of this group as predominantly aerobic heterotrophs. Here, we demonstrated that this functional group of haloarchaea also has its representatives in hypersaline alkaline lakes. Sediments from various hypersaline soda lakes showed high activity of sulfur reduction only partially inhibited by antibiotics. Eight pure cultures of sulfur-reducing natronoarchaea were isolated from such sediments using formate and butyrate as electron donors and sulfur as an electron acceptor. Unlike strict anaerobic haloarchaea, these novel sulfur-reducing natronoarchaea are facultative anaerobes, whose metabolic capabilities were inferred from cultivation experiments and genomic/proteomic reconstruction. While sharing many physiological traits with strict anaerobic haloarchaea, following metabolic distinctions make these new organisms be successful in both anoxic and aerobic habitats: the recruiting of heme-copper quinol oxidases as terminal electron sink in aerobic respiratory chain and the utilization of formate, hydrogen or short-chain fatty acids as electron donors during anaerobic growth with elemental sulfur. Obtained results significantly advance the emerging concept of halo(natrono)archaea as important players in the anaerobic sulfur and carbon cycling in various salt-saturated habitats.BT/Environmental Biotechnolog

    Land cover and nutrient enrichment regulates low-molecular weight dissolved organic matter turnover in freshwater ecosystems

    Get PDF
    Dissolved organic matter (DOM) is a complex mixture of carbon-containing compounds. The low-molecular weight (LMW) fraction constitutes thousands of different compounds and represents a substantial proportion of DOM in aquatic ecosystems. The turnover rates of this LMW DOM can be extremely high. Due to the challenges of measuring this pool at a molecular scale, comparatively little is known of the fate of LMW DOM compounds in lotic systems. This study addresses this knowledge gap, investigating the microbial processing of LMW DOM across 45 sites representing a range of physicochemical gradients and dominant land covers in the United Kingdom. Radioisotope tracers representing LMW dissolved organic carbon (DOC) (glucose), dissolved organic nitrogen (DON) (amino acid mixture), dissolved organic phosphorus (DOP) (glucose-6-phosphate), and soluble reactive phosphorus (SRP, measured as orthophosphate) were used to measure the microbial uptake of different DOM compounds in river waters. The amount of DOM biodegradation varied between different components (DON ≄ DOC > DOP), with the rate of turnover of all three increasing along a gradient of N and P enrichment across the range of sites. Conversely, the uptake of SRP decreased along this same gradient. This was ascribed to preferential utilization of DOP over SRP. Dominant land cover had a significant effect on DOM use as a resource, due to its control of nutrient enrichment within the catchments. We conclude that nutrient enrichment of river waters will lead to further DOM removal from the water column, increased microbial growth, and a decrease in stream oxygen saturation, exacerbating the effects of eutrophication in rivers
    • 

    corecore