21 research outputs found

    Exploring viral infection using single-cell sequencing.

    Get PDF
    Single-cell sequencing (SCS) has emerged as a valuable tool to study cellular heterogeneity in diverse fields, including virology. By studying the viral and cellular genome and/or transcriptome, the dynamics of viral infection can be investigated at single cell level. Most studies have explored the impact of cell-to-cell variation on the viral life cycle from the point of view of the virus, by analyzing viral sequences, and from the point of view of the cell, mainly by analyzing the cellular host transcriptome. In this review, we will focus on recent studies that use single-cell sequencing to explore viral diversity and cell variability in response to viral replication

    Model-informed target product profiles of long-acting-injectables for use as seasonal malaria prevention

    Get PDF
    Seasonal malaria chemoprevention (SMC) has proven highly efficacious in reducing malaria incidence. However, the continued success of SMC is threatened by the spread of resistance against one of its main preventive ingredients, Sulfadoxine-Pyrimethamine (SP), operational challenges in delivery, and incomplete adherence to the regimens. Via a simulation study with an individual-based model of malaria dynamics, we provide quantitative evidence to assess long-acting injectables (LAIs) as potential alternatives to SMC. We explored the predicted impact of a range of novel preventive LAIs as a seasonal prevention tool in children aged three months to five years old during late-stage clinical trials and at implementation. LAIs were co-administered with a blood-stage clearing drug once at the beginning of the transmission season. We found the establishment of non-inferiority of LAIs to standard 3 or 4 rounds of SMC with SP-amodiaquine was challenging in clinical trial stages due to high intervention deployment coverage. However, our analysis of implementation settings where the achievable SMC coverage was much lower, show LAIs with fewer visits per season are potential suitable replacements to SMC. Suitability as a replacement with higher impact is possible if the duration of protection of LAIs covered the duration of the transmission season. Furthermore, optimising LAIs coverage and protective efficacy half-life via simulation analysis in settings with an SMC coverage of 60% revealed important trade-offs between protective efficacy decay and deployment coverage. Our analysis additionally highlights that for seasonal deployment for LAIs, it will be necessary to investigate the protective efficacy decay as early as possible during clinical development to ensure a well-informed candidate selection process

    Single-Cell RNA-Seq Reveals Transcriptional Heterogeneity in Latent and Reactivated HIV-Infected Cells.

    Get PDF
    Despite effective treatment, HIV can persist in latent reservoirs, which represent a major obstacle toward HIV eradication. Targeting and reactivating latent cells is challenging due to the heterogeneous nature of HIV-infected cells. Here, we used a primary model of HIV latency and single-cell RNA sequencing to characterize transcriptional heterogeneity during HIV latency and reactivation. Our analysis identified transcriptional programs leading to successful reactivation of HIV expression

    Leveraging mathematical models of disease dynamics and machine learning to improve development of novel malaria interventions

    Get PDF
    BACKGROUND: Substantial research is underway to develop next-generation interventions that address current malaria control challenges. As there is limited testing in their early development, it is difficult to predefine intervention properties such as efficacy that achieve target health goals, and therefore challenging to prioritize selection of novel candidate interventions. Here, we present a quantitative approach to guide intervention development using mathematical models of malaria dynamics coupled with machine learning. Our analysis identifies requirements of efficacy, coverage, and duration of effect for five novel malaria interventions to achieve targeted reductions in malaria prevalence. METHODS: A mathematical model of malaria transmission dynamics is used to simulate deployment and predict potential impact of new malaria interventions by considering operational, health-system, population, and disease characteristics. Our method relies on consultation with product development stakeholders to define the putative space of novel intervention specifications. We couple the disease model with machine learning to search this multi-dimensional space and efficiently identify optimal intervention properties that achieve specified health goals. RESULTS: We apply our approach to five malaria interventions under development. Aiming for malaria prevalence reduction, we identify and quantify key determinants of intervention impact along with their minimal properties required to achieve the desired health goals. While coverage is generally identified as the largest driver of impact, higher efficacy, longer protection duration or multiple deployments per year are needed to increase prevalence reduction. We show that interventions on multiple parasite or vector targets, as well as combinations the new interventions with drug treatment, lead to significant burden reductions and lower efficacy or duration requirements. CONCLUSIONS: Our approach uses disease dynamic models and machine learning to support decision-making and resource investment, facilitating development of new malaria interventions. By evaluating the intervention capabilities in relation to the targeted health goal, our analysis allows prioritization of interventions and of their specifications from an early stage in development, and subsequent investments to be channeled cost-effectively towards impact maximization. This study highlights the role of mathematical models to support intervention development. Although we focus on five malaria interventions, the analysis is generalizable to other new malaria interventions

    Spatio-temporal modelling of routine health facility data for malaria risk micro-stratification in mainland Tanzania

    Get PDF
    As malaria transmission declines, the need to monitor the heterogeneity of malaria risk at finer scales becomes critical to guide community-based targeted interventions. Although routine health facility (HF) data can provide epidemiological evidence at high spatial and temporal resolution, its incomplete nature of information can result in lower administrative units without empirical data. To overcome geographic sparsity of data and its representativeness, geo-spatial models can leverage routine information to predict risk in un-represented areas as well as estimate uncertainty of predictions. Here, a Bayesian spatio-temporal model was applied on malaria test positivity rate (TPR) data for the period 2017-2019 to predict risks at the ward level, the lowest decision-making unit in mainland Tanzania. To quantify the associated uncertainty, the probability of malaria TPR exceeding programmatic threshold was estimated. Results showed a marked spatial heterogeneity in malaria TPR across wards. 17.7 million people resided in areas where malaria TPR was high (>/= 30; 90% certainty) in the North-West and South-East parts of Tanzania. Approximately 11.7 million people lived in areas where malaria TPR was very low (< 5%; 90% certainty). HF data can be used to identify different epidemiological strata and guide malaria interventions at micro-planning units in Tanzania. These data, however, are imperfect in many settings in Africa and often require application of geo-spatial modelling techniques for estimation

    Proteo-Transcriptomic Dynamics of Cellular Response to HIV-1 Infection.

    Get PDF
    Throughout the HIV-1 replication cycle, complex host-pathogen interactions take place in the infected cell, leading to the production of new virions. The virus modulates the host cellular machinery in order to support its life cycle, while counteracting intracellular defense mechanisms. We investigated the dynamic host response to HIV-1 infection by systematically measuring transcriptomic, proteomic, and phosphoproteomic expression changes in infected and uninfected SupT1 CD4+ T cells at five time points of the viral replication process. By means of a Gaussian mixed-effects model implemented in the new R/Bioconductor package TMixClust, we clustered host genes based on their temporal expression patterns. We identified a proteo-transcriptomic gene expression signature of 388 host genes specific for HIV-1 replication. Comprehensive functional analyses of these genes confirmed the previously described roles of some of the genes and revealed novel key virus-host interactions affecting multiple molecular processes within the host cell, including signal transduction, metabolism, cell cycle, and immune system. The results of our analysis are accessible through a freely available, dedicated and user-friendly R/Shiny application, called PEACHi2.0. This resource constitutes a catalogue of dynamic host responses to HIV-1 infection that provides a basis for a more comprehensive understanding of virus-host interactions

    The use of routine health facility data for micro-stratification of malaria risk in mainland Tanzania

    Get PDF
    BACKGROUND: Current efforts to estimate the spatially diverse malaria burden in malaria-endemic countries largely involve the use of epidemiological modelling methods for describing temporal and spatial heterogeneity using sparse interpolated prevalence data from periodic cross-sectional surveys. However, more malaria-endemic countries are beginning to consider local routine data for this purpose. Nevertheless, routine information from health facilities (HFs) remains widely under-utilized despite improved data quality, including increased access to diagnostic testing and the adoption of the electronic District Health Information System (DHIS2). This paper describes the process undertaken in mainland Tanzania using routine data to develop a high-resolution, micro-stratification risk map to guide future malaria control efforts. METHODS: Combinations of various routine malariometric indicators collected from 7098 HFs were assembled across 3065 wards of mainland Tanzania for the period 2017-2019. The reported council-level prevalence classification in school children aged 5-16 years (PfPR(5-16)) was used as a benchmark to define four malaria risk groups. These groups were subsequently used to derive cut-offs for the routine indicators by minimizing misclassifications and maximizing overall agreement. The derived-cutoffs were converted into numbered scores and summed across the three indicators to allocate wards into their overall risk stratum. RESULTS: Of 3065 wards, 353 were assigned to the very low strata (10.5% of the total ward population), 717 to the low strata (28.6% of the population), 525 to the moderate strata (16.2% of the population), and 1470 to the high strata (39.8% of the population). The resulting micro-stratification revealed malaria risk heterogeneity within 80 councils and identified wards that would benefit from community-level focal interventions, such as community-case management, indoor residual spraying and larviciding. CONCLUSION: The micro-stratification approach employed is simple and pragmatic, with potential to be easily adopted by the malaria programme in Tanzania. It makes use of available routine data that are rich in spatial resolution and that can be readily accessed allowing for a stratification of malaria risk below the council level. Such a framework is optimal for supporting evidence-based, decentralized malaria control planning, thereby improving the effectiveness and allocation efficiency of malaria control interventions

    Emulator-based Bayesian optimization for efficient multi-objective calibration of an individual-based model of malaria

    Get PDF
    Individual-based models have become important tools in the global battle against infectious diseases, yet model complexity can make calibration to biological and epidemiological data challenging. We propose using a Bayesian optimization framework employing Gaussian process or machine learning emulator functions to calibrate a complex malaria transmission simulator. We demonstrate our approach by optimizing over a high-dimensional parameter space with respect to a portfolio of multiple fitting objectives built from datasets capturing the natural history of malaria transmission and disease progression. Our approach quickly outperforms previous calibrations, yielding an improved final goodness of fit. Per-objective parameter importance and sensitivity diagnostics provided by our approach offer epidemiological insights and enhance trust in predictions through greater interpretability

    Study on integrated coastal zone management

    No full text
    Concepts and principles of integrated coastal zone management for the countries around the Black Sea. Legal framework and the current state of the coastal zone (Natural condition, anthropogenic pressures, protected areas, interaction, marine transport). Institutional and political frameworks. Analysis of problems and opportunities for introducing ICZM in the Black Sea Region.Improvement of the Integrated Coastal Zone Management in the Black Sea Regio

    Contribution of environmental indices in meeting the objectives and principles of the Marine Strategy Framework directive (MSFD)

    No full text
    The summer school on \u2018The contribution of environmental indices in meeting the objectives and principles of the Marine Strategy Framework Directive\u2019 was organised in Constanta, Romania, during 3th and the 7th of June 2013, within the framework of Work Package 8 (WP8) of the PERSEUS Project (Policy-oriented marine Environmental Research for the Southern European Seas). The main focus was to create training opportunities which would strengthen the existing research and technological development network in the Mediterranean and Black seas in principles such as ecosystem modelling, monitoring and environmental assessment. The school targeted the need that both the EU and non-EU states should adopt a common framework and regional approach with regards to environmental policy development, common monitoring practices and the use of common assessment tools. The main objectives of the PERSEUS Summer School on the contribution of environmental indices in meeting the objectives and principles of the Marine Strategy Framework Directive (MSFD) were the: (i) to expose participants to aspects of the theoretical and practical background on the assessment of the benthic ecological status using the index M-AMBI (multivariate AMBI \u2013 AZTI Marine Biotic Index) and Marine Strategy Framework Directive assessment issues; (ii) to provide participants with the most important concepts related to the fishery related indices; (iii) to get participants acquainted with the main applications of ocean color based index/eutrophicationrelated core set indicators CSI023 (chlorophyll-a); (iv) to present theoretical and practical aspects of characterisation of the ecological state of marine and coastal waters using Trophic index (TRIX); (v) to establish links between different researchers involved in the field of environmental indicators related with the Marine Strategy Framework Directive. 20 students from various Black sea and Mediterranean countries and with different backgrounds completed the school successfully, blending a thorough lecture programme with social interaction and exchange of ideas
    corecore