585 research outputs found

    Density of states in SF bilayers with arbitrary strength of magnetic scattering

    Get PDF
    We developed the self-consistent method for the calculation of the density of states N(ϵ)N(\epsilon) in the SF bilayers. It based on the quasi-classical Usadel equations and takes into account the suppression of superconductivity in the S layer due to the proximity effect with the F metal, as well as existing mechanisms of the spin dependent electron scattering. We demonstrate that the increase of the spin orbit or spin flip electron scattering rates results in completely different transformations of N(ϵ)N(\epsilon) at the free F layer interface. The developed formalism has been applied for the interpretation of the available experimental data.Comment: 5 pages, 8 figure

    Influence of magnetic impurities on charge transport in diffusive-normal-metal / superconductor junctions

    Get PDF
    Charge transport in the diffusive normal metal (DN) / insulator / ss- and d% d -wave superconductor junctions is studied in the presence of magnetic impurities in DN in the framework of the quasiclassical Usadel equations with the generalized boundary conditions. The cases of ss- and d-wave superconducting electrodes are considered. The junction conductance is calculated as a function of a bias voltage for various parameters of the DN metal: resistivity, Thouless energy, the magnetic impurity scattering rate and the transparency of the insulating barrier between DN and a superconductor. It is shown that the proximity effect is suppressed by magnetic impurity scattering in DN for any value of the barrier transparency. In low-transparent s-wave junctions this leads to the suppression of the normalized zero-bias conductance. In contrast to that, in high transparent junctions zero-bias conductance is enhanced by magnetic impurity scattering. The physical origin of this effect is discussed. For the d-wave junctions, the dependence on the misorientation angle α\alpha between the interface normal and the crystal axis of a superconductor is studied. The zero-bias conductance peak is suppressed by the magnetic impurity scattering only for low transparent junctions with α∼0\alpha \sim 0. In other cases the conductance of the d-wave junctions does not depend on the magnetic impurity scattering due to strong suppression of the proximity effect by the midgap Andreev resonant states.Comment: 11 pages, 13 figures;d-wave case adde

    Anisotropic properties of MgB2 by torque magnetometry

    Full text link
    Anisotropic properties of superconducting MgB2 obtained by torque magnetometry are compared to theoretical predictions, concentrating on two issues. Firstly, the angular dependence of Hc2 is shown to deviate close to Tc from the dependence assumed by anisotropic Ginzburg-Landau theory. Secondly, from the evaluation of torque vs angle curves it is concluded that the anisotropy of the penetration depth gamma_lambda has to be substantially higher at low temperature than theoretical estimates, at least in fields higher than 0.2 T.Comment: 2 p.,2 Fig., submitted to Physica C (M2S-Rio proceedings); v2: 1 ref adde

    Effect of disorder on the far-infrared conductivity and on the microwave conductivity of two-band superconductors

    Full text link
    We consider the far-infrared and the microwave conductivities of a two-band superconductor with non-magnetic impurities. The strong coupling expressions for the frequency and temperature dependent conductivity of a two-band superconductor are developed assuming isotropic bands and interactions. Our numerical results obtained using realistic interaction parameters for MgB2_{2} are compared with experiments on this compound. We find that the available experimental results for the far-infrared conductivity of MgB2_{2} are consistent with multi-band superconductivity in the presence of a sufficiently strong interband impurity scattering. On the other hand, our numerical results for the microwave conductivity in the superconducting state indicate that the experimental results obtained on samples with the highest transition temperature TcT_{c} are consistent with a low interband impurity scattering rate but depend sensitively on the ratio of the total scattering rates in the two bands. For the π\pi-band scattering rate γπ\gamma_{\pi} not greater than the σ\sigma-band scattering rate γσ\gamma_{\sigma} there is a single, broad, low-temperature (at about 0.5TcT_{c}) coherence peak in the microwave conductivity. For γπ/γσ\gamma_{\pi}/\gamma_{\sigma}=4--7 a high-temperature (at about 0.9TcT_{c}) coherence peak is dominant, but there is also a low-temperature peak/shoulder resulting from the contribution of the π\pi-band carriers to the microwave conductivity. For γπ/γσ≫\gamma_{\pi}/\gamma_{\sigma}\gg1 only the high-temperature coherence peak should be observable.Comment: 11 pages, 6 figure

    The importance of Opuntia in Mexico and routes of invasion and impact of Cactoblastis cactorum (Lepidoptera: Pyralidae)

    Get PDF
    This is the publisher's version, also available electronically from http://journals.fcla.edu/flaent/article/view/74992.The appearance of the cactus moth Cactoblastis cactorum in Florida has roused concern over its possible effects on the Opuntia-rich areas of Mexico and the southwestern United States. In this paper we discuss the economic importance of Opuntia in Mexico and propose a method to predict the invasion of the alien species C. cactorum. In Mexico, the products derived from Opuntia are mainly human food and fodder for livestock. Both cultivated and wild populations of Opuntia are currently used for these two purposes. By using bioclimatic modeling, we predicted the potential distribution of C. cactorum and overlaid this on the actual distribution of Opuntia species. The resulting maps indicate that the possible routes of invasion to Mexico are 1) along the northern border through Texas (most likely) and 2) via southeastern Mexico (less likely). The impacts of an invasion of C. cactorum on Opuntia products could be significant as well as being a threat to endemic species. Bioclimatic modeling can help to predict the areas of highest probability of attack and facilitate planning to mitigate future impacts

    Disorder induced transition between s_+- and s_++ states in two-band superconductors

    Get PDF
    We have reexamined the problem of disorder in two-band superconductors, and shown within the framework of the T-matrix approximation, that the suppression of T_c can be described by a single parameter depending on the intraband and interband impurity scattering rates. T_c is shown to be more robust against nonmagnetic impurities than would be predicted in the trivial extension of Abrikosov-Gor'kov theory. We find a disorder-induced transition from the s_{\pm} state to a gapless and then to a fully gapped s_{++} state, controlled by a single parameter -- the sign of the average coupling constant . We argue that this transition has strong implications for experiments.Comment: 5 pages, 4 figures; suppl. material: 3 pages, 2 figures; published versio
    • …
    corecore