15 research outputs found

    Climate's Long-term Impact on New Zealand Infrastructure (CLINZI) - A Case Study of Hamilton City, New Zealand

    Get PDF
    Infrastructure systems and services (ISS) are vulnerable to changes in climate. This paper reports on a study of the impact of gradual climate changes on ISS in Hamilton City, New Zealand. This study is unique in that it is the first of its kind to be applied to New Zealand ISS. This study also considers a broader range of ISS than most other climate change studies recently conducted. Using historical climate data and four climate change scenarios, we modelled the impact of climate change on water supply and quality, transport, energy demand, public health and air quality. Our analysis reveals that many of Hamilton City's infrastructure sectors demonstrated greater responsiveness to population changes than changes in gradual climate change. Any future planning decisions should be sensitive to climate change, but not driven by it (even though that may be fashionable to do so). We find there is considerable scope for extending this analysis. First, there is a need for local infrastructure managers to improve the coverage of the data needed for this kind of study. Second, any future study of this kind must focus on daily (rather than monthly) time steps and extreme (as well as gradual) climate changes.Climate change, infrastructure, integrated assessment, adaptation, Agricultural and Food Policy, Community/Rural/Urban Development, Crop Production/Industries, Environmental Economics and Policy, Farm Management, International Relations/Trade, Land Economics/Use, Livestock Production/Industries, Political Economy,

    Effects of rapid urbanisation on the urban thermal environment between 1990 and 2011 in Dhaka Megacity, Bangladesh

    Get PDF
    This study investigates the influence of land-use/land-cover (LULC) change on land surface temperature (LST) in Dhaka Megacity, Bangladesh during a period of rapid urbanisation. LST was derived from Landsat 5 TM scenes captured in 1990, 2000 and 2011 and compared to contemporaneous LULC maps. We compared index-based and linear spectral mixture analysis (LSMA) techniques for modelling LST. LSMA derived biophysical parameters corresponded more strongly to LST than those produced using index-based parameters. Results indicated that vegetation and water surfaces had relatively stable LST but it increased by around 2 °C when these surfaces were converted to built-up areas with extensive impervious surfaces. Knowledge of the expected change in LST when one land-cover is converted to another can inform land planners of the potential impact of future changes and urges the development of better management strategies

    The Power of Language in Feedback Metaphors: A Response to Kennedy

    No full text

    Climate's Long-term Impact on New Zealand Infrastructure (CLINZI) - A Case Study of Hamilton City, New Zealand

    No full text
    Infrastructure systems and services (ISS) are vulnerable to changes in climate. This paper reports on a study of the impact of gradual climate changes on ISS in Hamilton City, New Zealand. This study is unique in that it is the first of its kind to be applied to New Zealand ISS. This study also considers a broader range of ISS than most other climate change studies recently conducted. Using historical climate data and four climate change scenarios, we modelled the impact of climate change on water supply and quality, transport, energy demand, public health and air quality. Our analysis reveals that many of Hamilton City's infrastructure sectors demonstrated greater responsiveness to population changes than changes in gradual climate change. Any future planning decisions should be sensitive to climate change, but not driven by it (even though that may be fashionable to do so). We find there is considerable scope for extending this analysis. First, there is a need for local infrastructure managers to improve the coverage of the data needed for this kind of study. Second, any future study of this kind must focus on daily (rather than monthly) time steps and extreme (as well as gradual) climate changes

    Global change and the ecology of cities.

    No full text
    Abstract: Urban areas are hot spots that drive environmental change at multiple scales. Material demands of production and human consumption alter land use and cover, biodiversity, and hydrosystems locally to regionally, and urban waste discharge affects local to global biogeochemical cycles and climate. For urbanites, however, global environmental changes are swamped by dramatic changes in the local environment. Urban ecology integrates natural and social sciences to study these radically altered local environments and their regional and global effects. Cities themselves present both the problems and solutions to sustainability challenges of an increasingly urbanized world. Keywords: Ecology | Environment | Urbanization Article: Humanity today is experiencing a dramatic shift to urban living. Whereas in 1900 a mere 10% of the global population were urban dwellers, that percentage now exceeds 50% and will rise even more in the next 50 year
    corecore