494 research outputs found

    Coexistence of critical sensitivity and subcritical specificity can yield optimal population coding

    Full text link
    The vicinity of phase transitions selectively amplifies weak stimuli, yielding optimal sensitivity to distinguish external input. Along with this enhanced sensitivity, enhanced levels of fluctuations at criticality reduce the specificity of the response. Given that the specificity of the response is largely compromised when the sensitivity is maximal, the overall benefit of criticality for signal processing remains questionable. Here it is shown that this impasse can be solved by heterogeneous systems incorporating functional diversity, in which critical and subcritical components coexist. The subnetwork of critical elements has optimal sensitivity, and the subnetwork of subcritical elements has enhanced specificity. Combining segregated features extracted from the different subgroups, the resulting collective response can maximise the tradeoff between sensitivity and specificity measured by the dynamic-range-to-noise-ratio. Although numerous benefits can be observed when the entire system is critical, our results highlight that optimal performance is obtained when only a small subset of the system is at criticality.Comment: 7 pages, 4 figure

    Diversity improves performance in excitable networks

    Full text link
    As few real systems comprise indistinguishable units, diversity is a hallmark of nature. Diversity among interacting units shapes properties of collective behavior such as synchronization and information transmission. However, the benefits of diversity on information processing at the edge of a phase transition, ordinarily assumed to emerge from identical elements, remain largely unexplored. Analyzing a general model of excitable systems with heterogeneous excitability, we find that diversity can greatly enhance optimal performance (by two orders of magnitude) when distinguishing incoming inputs. Heterogeneous systems possess a subset of specialized elements whose capability greatly exceeds that of the nonspecialized elements. Nonetheless, the behavior of the whole network can outperform all subgroups. We also find that diversity can yield multiple percolation, with performance optimized at tricriticality. Our results are robust in specific and more realistic neuronal systems comprising a combination of excitatory and inhibitory units, and indicate that diversity-induced amplification can be harnessed by neuronal systems for evaluating stimulus intensities.Comment: 17 pages, 7 figure

    Midwives in Byzantium : an overview

    Get PDF
    This paper aims to draft an overview of what being a midwife in Byzantium meant, according to the literary sources. Midwife in Byzantium appears to be a rather complex and elusive figure to study. This is due to both the scarce references in the sources and the vague definition of midwifery itself in the ancient world. The main fields of activity of Byzantine midwives were three: medical, religious and care. As a first attempt of studying Byzantine midwife all-round, this paper ends by suggesting further research perspectives in order to get a clearer and more complete understanding of such figure.El presente artículo se propone trazar un cuadro general sobre el significado de la figura de la nodriza en Bizancio, en base a las fuentes literarias. La nodriza en Bizancio resulta ser una figura enigmática y difícil de estudiar, principalmente debido a las escasas referencias que se encuentran en las fuentes, pero también a la vaga definición de sus funciones en el mundo antiguo. Los principales campos de acción de las nodrizas bizantinas eran tres: médico, religioso y de cuidado. Tratándose de un primer acercamiento al estudio de la nodriza bizantina en sus múltiples aspectos, este artículo se concluye proponiendo posibles puntos de vista investigativos que posibiliten una comprensión más clara y completa de dicha figura

    Mechanisms of Zero-Lag Synchronization in Cortical Motifs

    Get PDF
    Zero-lag synchronization between distant cortical areas has been observed in a diversity of experimental data sets and between many different regions of the brain. Several computational mechanisms have been proposed to account for such isochronous synchronization in the presence of long conduction delays: Of these, the phenomenon of "dynamical relaying" - a mechanism that relies on a specific network motif - has proven to be the most robust with respect to parameter mismatch and system noise. Surprisingly, despite a contrary belief in the community, the common driving motif is an unreliable means of establishing zero-lag synchrony. Although dynamical relaying has been validated in empirical and computational studies, the deeper dynamical mechanisms and comparison to dynamics on other motifs is lacking. By systematically comparing synchronization on a variety of small motifs, we establish that the presence of a single reciprocally connected pair - a "resonance pair" - plays a crucial role in disambiguating those motifs that foster zero-lag synchrony in the presence of conduction delays (such as dynamical relaying) from those that do not (such as the common driving triad). Remarkably, minor structural changes to the common driving motif that incorporate a reciprocal pair recover robust zero-lag synchrony. The findings are observed in computational models of spiking neurons, populations of spiking neurons and neural mass models, and arise whether the oscillatory systems are periodic, chaotic, noise-free or driven by stochastic inputs. The influence of the resonance pair is also robust to parameter mismatch and asymmetrical time delays amongst the elements of the motif. We call this manner of facilitating zero-lag synchrony resonance-induced synchronization, outline the conditions for its occurrence, and propose that it may be a general mechanism to promote zero-lag synchrony in the brain.Comment: 41 pages, 12 figures, and 11 supplementary figure

    A mechanism for achieving zero-lag long-range synchronization of neural activity

    Get PDF
    Poster presentation: How can two distant neural assemblies synchronize their firings at zero-lag even in the presence of non-negligible delays in the transfer of information between them? Neural synchronization stands today as one of the most promising mechanisms to counterbalance the huge anatomical and functional specialization of the different brain areas. However, and albeit more evidence is being accumulated in favor of its functional role as a binding mechanism of distributed neural responses, the physical and anatomical substrate for such a dynamic and precise synchrony, especially zero-lag even in the presence of non-negligible delays, remains unclear. Here we propose a simple network motif that naturally accounts for zero-lag synchronization of spiking assemblies of neurons for a wide range of temporal delays. We demonstrate that when two distant neural assemblies do not interact directly but relaying their dynamics via a third mediating single neuron or population and eventually achieve zero-lag coherent firing. Extensive numerical simulations of populations of Hodgkin-Huxley neurons interacting in such a network are analyzed. The results show that even with axonal delays as large as 15 ms the distant neural populations can synchronize their firings at zero-lag in a millisecond precision after the exchange of a few spikes. The role of noise and a distribution of axonal delays in the synchronized dynamics of the neural populations are also studied confirming the robustness of this sync mechanism. The proposed network module is densely embedded within the complex functional architecture of the brain and especially within the reciprocal thalamocortical interactions where the role of indirect pathways mimicking direct cortico-cortical fibers has been already suggested to facilitate trans-areal cortical communication. In summary the robust neural synchronization mechanism presented here arises as a consequence of the relay and redistribution of the dynamics performed by a mediating neuronal population. In opposition to previous works, neither inhibitory, gap junctions, nor complex networks need to be invoked to provide a stable mechanism of zero-phase correlated activity of neural populations in the presence of large conduction delays

    ESTILOS GERENCIAIS DOS COORDENADORES DE CURSOS DE GRADUAÇÃO DE UMA INSTITUIÇÃO DE ENSINO SUPERIOR

    Get PDF
    O estudo objetivou identificar os estilos gerenciais dos coordenadores de curso de graduação de uma instituição de ensino superior comunitária sediada em Santa Catarina. Para tal, realizou-se pesquisa descritiva, com abordagem quantitativa. Os dados foram apurados por meio de levantamento (survey) baseado em questionário respondido por 20 coordenadores de cursos de da universidade pesquisada, cujos dados foram analisados por meio de estatística descritiva. Os principais achados da pesquisa revelam coordenadores com formação adequada para o exercício de tal função, além de que grande parte dos respondentes possui experiência anterior na área de gestão. Quanto às principais funções evidenciadas pelos respondentes, estas referem-se à organização (75%), ao planejamento (65%), à liderança (55%) e à de mediador (50%). Os resultados indicam, ainda, coordenadores mais voltados à gestão dos próprios cursos, mas que não deixam de pensar na instituição como um todo. Também foi possível constatar que os coordenadores mostraram-se preocupados com a qualidade dos cursos, mantendo bom nível de comunicação com seus pares, bem como com os demais cursos de graduação da instituição

    Dwelling Quietly in the Rich Club: Brain Network Determinants of Slow Cortical Fluctuations

    Full text link
    For more than a century, cerebral cartography has been driven by investigations of structural and morphological properties of the brain across spatial scales and the temporal/functional phenomena that emerge from these underlying features. The next era of brain mapping will be driven by studies that consider both of these components of brain organization simultaneously -- elucidating their interactions and dependencies. Using this guiding principle, we explored the origin of slowly fluctuating patterns of synchronization within the topological core of brain regions known as the rich club, implicated in the regulation of mood and introspection. We find that a constellation of densely interconnected regions that constitute the rich club (including the anterior insula, amygdala, and precuneus) play a central role in promoting a stable, dynamical core of spontaneous activity in the primate cortex. The slow time scales are well matched to the regulation of internal visceral states, corresponding to the somatic correlates of mood and anxiety. In contrast, the topology of the surrounding "feeder" cortical regions show unstable, rapidly fluctuating dynamics likely crucial for fast perceptual processes. We discuss these findings in relation to psychiatric disorders and the future of connectomics.Comment: 35 pages, 6 figure

    Signal integration enhances the dynamic range in neuronal systems

    Get PDF
    The dynamic range measures the capacity of a system to discriminate the intensity of an external stimulus. Such an ability is fundamental for living beings to survive: to leverage resources and to avoid danger. Consequently, the larger is the dynamic range, the greater is the probability of survival. We investigate how the integration of different input signals affects the dynamic range, and in general the collective behavior of a network of excitable units. By means of numerical simulations and a mean-field approach, we explore the nonequilibrium phase transition in the presence of integration. We show that the firing rate in random and scale-free networks undergoes a discontinuous phase transition depending on both the integration time and the density of integrator units. Moreover, in the presence of external stimuli, we find that a system of excitable integrator units operating in a bistable regime largely enhances its dynamic range.Comment: 5 pages, 4 figure
    • …
    corecore