28 research outputs found

    Dormant Tumor Cell Vaccination: A Mathematical Model of Immunological Dormancy in Triple-Negative Breast Cancer.

    Get PDF
    Triple-negative breast cancer (TNBC) is a molecular subtype of breast malignancy with a poor clinical prognosis. There is growing evidence that some chemotherapeutic agents induce an adaptive anti-tumor immune response. This reaction has been proposed to maintain the equilibrium phase of the immunoediting process and to control tumor growth by immunological cancer dormancy. We recently reported a model of immunological breast cancer dormancy based on the murine 4T1 TNBC model. Treatment of 4T1 cells in vitro with high-dose chemotherapy activated the type I interferon (type I IFN) signaling pathway, causing a switch from immunosuppressive to cytotoxic T lymphocyte-dependent immune response in vivo, resulting in sustained dormancy. Here, we developed a deterministic mathematical model based on the assumption that two cell subpopulations exist within the treated tumor: one population with high type I IFN signaling and immunogenicity and lower growth rate; the other population with low type I IFN signaling and immunogenicity and higher growth rate. The model reproduced cancer dormancy, elimination, and immune-escape in agreement with our previously reported experimental data. It predicted that the injection of dormant tumor cells with active type I IFN signaling results in complete growth control of the aggressive parental cancer cells injected at a later time point, but also of an already established aggressive tumor. Taken together, our results indicate that a dormant cell population can suppress the growth of an aggressive counterpart by eliciting a cytotoxic T lymphocyte-dependent immune response

    Reduced DNA damage in tumor spheroids compared to monolayer cultures exposed to ionizing radiation

    Get PDF
    Background: Several cell lines when cultured under proper condition can form three dimensional structures called multicellular tumor spheroids. Tumor spheroids are valuable in vitro models for studying physical and biological behavior of real tumors. A number of previous studies using a variety of techniques have shown no relationship between radiosensitivity and DNA strand breaks in monolayer and spheroid model of cell culture. Materials and Methods: In the present study, the radiosensitivity of cells grown as monolayer and spheroid were measured with colony assay and the role of DNA strand breaks in this sensitivity was examined using single cell gel electrophoresis assay also known as Comet assay. Results: In the present experiment, spheroids showed more radioresistance than monolayers asjudged by the number of colonies which they produced after radiation. Under the same experimental conditions, less level of DNA damage was detected in spheroids using "comet assay" technique. Conclusion: It was concluded that the loss of radioresistance which was observed in monolayer cultures might have been attributed to the higher level of DNA damage occurred in the cells

    Classification of lung cancer tumors based on structural and physicochemical properties of proteins by bioinformatics models

    Get PDF
    Rapid distinction between small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC) tumors is very important in diagnosis of this disease. Furthermore sequence-derived structural and physicochemical descriptors are very useful for machine learning prediction of protein structural and functional classes, classifying proteins and the prediction performance. Herein, in this study is the classification of lung tumors based on 1497 attributes derived from structural and physicochemical properties of protein sequences (based on genes defined by microarray analysis) investigated through a combination of attribute weighting, supervised and unsupervised clustering algorithms. Eighty percent of the weighting methods selected features such as autocorrelation, dipeptide composition and distribution of hydrophobicity as the most important protein attributes in classification of SCLC, NSCLC and COMMON classes of lung tumors. The same results were observed by most tree induction algorithms while descriptors of hydrophobicity distribution were high in protein sequences COMMON in both groups and distribution of charge in these proteins was very low; showing COMMON proteins were very hydrophobic. Furthermore, compositions of polar dipeptide in SCLC proteins were higher than NSCLC proteins. Some clustering models (alone or in combination with attribute weighting algorithms) were able to nearly classify SCLC and NSCLC proteins. Random Forest tree induction algorithm, calculated on leaves one-out and 10-fold cross validation) shows more than 86 accuracy in clustering and predicting three different lung cancer tumors. Here for the first time the application of data mining tools to effectively classify three classes of lung cancer tumors regarding the importance of dipeptide composition, autocorrelation and distribution descriptor has been reported. © 2012 Hosseinzadeh et al

    Hyperthermia induces differentiation without apoptosis in permissive temperatures in human erythroleukaemia cells

    Get PDF
    Purpose: The aim of the present study was to investigate whether induction of differentiation by hyperthermia is accompanied by apoptosis and necrosis to further evaluate the benefits of using hyperthermia as a differentiation inducing physical modality. Materials and method: Differentiation was evaluated in K562 erythroleukaemia cells by measuring haemoglobin synthesis and flow cytometric measurement of glycophorin A expression. Apoptosis was measured by Annexin-V-FITC and Propidium Iodide (PI) double staining assay. Apoptosis and necrosis was also evaluated morphologically using staining with acridine orange/ethidium bromide (AO/EtBr) by fluorescence microscopy. Heat shock protein 70 (HSP70) level was measured by ELISA kit. Results: Hyperthermia (43°C) induced differentiation as judged by increased haemoglobin synthesis and glycophorin A expression. No sign of apoptosis or necrosis could be detected at this temperature. Cell viability did not change due to heat treatment, and cellular proliferation was reduced in a dose (heating time) dependent manner. At 45°C, hyperthermia induced apoptosis and necrosis with minimal or no sign of differentiation. HSP70 level was significantly increased at 43°C along with differentiation of leukaemic cells, while at 45°C no significant effect on HSP70 production could be observed. Conclusions: The encouraging results obtained here indicate that by heat treatment at 43°C, hyperthermia can be used alone or in combination with other modalities as a differentiation inducing agent without any detectable apoptotic activity. Positive correlation between HSP70 production and induction of differentiation and lack of apoptosis by hyperthermia confirm the possible role of HSP70 in the heat-induced differentiation and apoptosis in leukaemic cells

    Pectic acid effects on prolactin secretion in GH3/B6 rat pituitary cell line

    Get PDF
    Background: Pectic acid extracted from plants increases the secretion of prolactin (PRL) when injected intravenously into ewes or fed to rats. Fragments of ewe hypophysis and lactating rabbit mammary gland incubated in vitro in the presence of pectic acid secreted more PRL and caseins compared to the controls. However, it is not known whether pectic acid directly stimulates PRL secretion in pituitary or interference of factors from hypophysis is required for this process. Methods: GH3/B6 cells, a clonal strain of rat pituitary, were cultured and incubated with pectic acid (2.5-100 μg/mL). The integrity of cells was examined under pectic acid treatment microscopically. Controls or pectic acid treated cells were assayed for their ability to produce PRL. The PRL was assayed by Western-blotting and Radioimmunoassay. Results: pectic acid did not have any significant effect on the viability of cells. After being incubated with pectic acid, the cells started to become circular and protuberant shape. The maximum stimulation and PRL secretion occurred at 100 μg/mL concentration within 30 min of incubation with pectic acid. Conclusion: pectic acid could stimulate the release of PRL in GH3/B6 cells in the short-term incubation. This result suggested that pectic acid is a nontoxic agent that could directly stimulate PRL secretion in pituitary cells without any interference of hypophysis

    Apoptotic pathway induced by noscapine in human myelogenous leukemic cells

    Get PDF
    It has been shown that noscapine, an opium-derived phthalideisoquinoline alkaloid that is currently being used as an oral antitussive drug, induces apoptosis in myeloid leukemia cells. The molecular mechanism responsible for the anticancer effects of noscapine is poorly understood. In the current study, the apoptotic effects of noscapine on two myeloid cell lines, apoptosis-proficient HL60 cells and apoptosis-resistant K562 cells, were analyzed. An increase in the activity of caspase-2, -3, -6, -8 and -9, poly(ADP ribose) polymerase cleavage, detection of phosphatidylserine on the outer layer of the cell membrane, nucleation of chromatin, and DNA fragmentation suggested the induction of apoptosis. Noscapine increased the Bax/Bcl-2 ratio with a significant decrease of Bcl-2 expression accompanied with Bcl-2 phosphorylation. Using an inhibitory approach, the activation of the caspase cascade involved in the noscapine-induced apoptosis was analyzed. We observed no inhibitory effect of the caspase-8 inhibitor on caspase-9 activity. In view of these results and taking into consideration that K562 cells are Fas-null, we suggested that caspase-8 is activated in a Fas-independent manner downstream of caspase-9. In conclusion, noscapine can induce apoptosis in both apoptosis-proficient and apoptosis-resistant leukemic cells, and it can be a novel candidate in the treatment of hematological malignancies. © 2007 Lippincott Williams & Wilkins, Inc

    A biophysical study on the mechanism of interactions of DOX or PTX with α-lactalbumin as a delivery carrier

    Full text link
    © 2018, The Author(s). Doxorubicin and paclitaxel, two hydrophobic chemotherapeutic agents, are used in cancer therapies. Presence of hydrophobic patches and a flexible fold could probably make α-Lactalbumin a suitable carrier for hydrophobic drugs. In the present study, a variety of thermodynamic, spectroscopic, computational, and cellular techniques were applied to assess α-lactalbumin potential as a carrier for doxorubicin and paclitaxel. According to isothermal titration calorimetry data, the interaction between α-lactalbumin and doxorubicin or paclitaxel is spontaneous and the K (M−1) value for the interaction of α-lactalbumin and paclitaxel is higher than that for doxorubicin. Differential scanning calorimetry and anisotropy results indicated formation of α-lactalbumin complexes with doxorubicin or paclitaxel. Furthermore, molecular docking and dynamic studies revealed that TRPs are not involved in α-Lac’s interaction with Doxorubicin while TRP 60 interacts with paclitaxel. Based on Pace analysis to determine protein thermal stability, doxorubicin and paclitaxel induced higher and lower thermal stability in α-lactalbumin, respectively. Besides, fluorescence lifetime measurements reflected that the interaction between α-lactalbumin with doxorubicin or paclitaxel was of static nature. Therefore, the authors hypothesized that α-lactalbumin could serve as a carrier for doxorubicin and paclitaxel by reducing cytotoxicity and apoptosis which was demonstrated during our in vitro cell studies

    Kinetics of reversible-sequestration of leukocytes by the isolated perfused rat lung

    No full text
    The kinetics and morphology of sequestration and margination of rat leukocytes were studied using an isolated perfused and ventilated rat lung preparation. Whole rat blood, bone marrow suspension, or leukocyte suspensions, were used to perfuse the isolated rat lung. The lung was also perfused with latex particle suspensions and the passage of particles through the lung capillaries was studied. When a leukocyte suspension was perfused through the lung in the single-pass mode, the rate of sequestration decreased as more cells were perfused. In contrast, latex particles of a size comparable to that of leukocytes were totally stopped by the lung. When the leukocyte suspension was recirculated through the lung, cells were rapidly removed from circulation until a steady state was reached, after which no net removal of cells by the lung occurred. These results indicate that leukocytes are reversibly sequestered from circulation. The sequestered cells marginated and attached to the luminal surface of the endothelium of post-capillary venules and veins. A mathematical model was developed based on the assumption that the attachment and detachment of leukocytes to blood vessel walls follows first-order kinetics. The model correctly predicts the following characteristics of the system: (a) the kinetics of the sequestration of leukocytes by the lung; (b) the existence of a steady state when a suspension of leukocytes is recirculated through the lung; and (c) the independence of the fraction of cells remaining in circulation from the starting concentration for all values of starting concentration. (ERB
    corecore