5 research outputs found

    D-cycloserine augmentation of exposure-based cognitive behavior therapy for anxiety, obsessive-compulsive, and posttraumatic stress disorders: a systematic review and meta-analysis of individual participant data

    Full text link
    Importance: Whether and under which conditions D-cycloserine (DCS) augments the effects of exposure-based cognitive behavior therapy for anxiety, obsessive-compulsive, and posttraumatic stress disorders is unclear. Objective: To clarify whether DCS is superior to placebo in augmenting the effects of cognitive behavior therapy for anxiety, obsessive-compulsive, and posttraumatic stress disorders and to evaluate whether antidepressants interact with DCS and the effect of potential moderating variables. Data Sources: PubMed, EMBASE, and PsycINFO were searched from inception to February 10, 2016. Reference lists of previous reviews and meta-analyses and reports of randomized clinical trials were also checked. Study Selection: Studies were eligible for inclusion if they were (1) double-blind randomized clinical trials of DCS as an augmentation strategy for exposure-based cognitive behavior therapy and (2) conducted in humans diagnosed as having specific phobia, social anxiety disorder, panic disorder with or without agoraphobia, obsessive-compulsive disorder, or posttraumatic stress disorder. Data Extraction and Synthesis: Raw data were obtained from the authors and quality controlled. Data were ranked to ensure a consistent metric across studies (score range, 0-100). We used a 3-level multilevel model nesting repeated measures of outcomes within participants, who were nested within studies. Results: Individual participant data were obtained for 21 of 22 eligible trials, representing 1047 of 1073 eligible participants. When controlling for antidepressant use, participants receiving DCS showed greater improvement from pretreatment to posttreatment (mean difference, -3.62; 95% CI, -0.81 to -6.43; P = .01; d = -0.25) but not from pretreatment to midtreatment (mean difference, -1.66; 95% CI, -4.92 to 1.60; P = .32; d = -0.14) or from pretreatment to follow-up (mean difference, -2.98, 95% CI, -5.99 to 0.03; P = .05; d = -0.19). Additional analyses showed that participants assigned to DCS were associated with lower symptom severity than those assigned to placebo at posttreatment and at follow-up. Antidepressants did not moderate the effects of DCS. None of the prespecified patient-level or study-level moderators was associated with outcomes. Conclusions and Relevance: D-cycloserine is associated with a small augmentation effect on exposure-based therapy. This effect is not moderated by the concurrent use of antidepressants. Further research is needed to identify patient and/or therapy characteristics associated with DCS response.2018-05-0

    D-cycloserine augmentation of exposure-based cognitive behavior therapy for anxiety, obsessive-compulsive, and posttraumatic stress disorders: A systematic review and meta-analysis of individual participant data

    Get PDF
    Contains fulltext : 174490.pdf (publisher's version ) (Open Access)Importance: Whether and under which conditions D-cycloserine (DCS) augments the effects of exposure-based cognitive behavior therapy for anxiety, obsessive-compulsive, and posttraumatic stress disorders is unclear. Objective: To clarify whether DCS is superior to placebo in augmenting the effects of cognitive behavior therapy for anxiety, obsessive-compulsive, and posttraumatic stress disorders and to evaluate whether antidepressants interact with DCS and the effect of potential moderating variables. Data Sources: PubMed, EMBASE, and PsycINFO were searched from inception to February 10, 2016. Reference lists of previous reviews and meta-analyses and reports of randomized clinical trials were also checked. Study Selection: Studies were eligible for inclusion if they were (1) double-blind randomized clinical trials of DCS as an augmentation strategy for exposure-based cognitive behavior therapy and (2) conducted in humans diagnosed as having specific phobia, social anxiety disorder, panic disorder with or without agoraphobia, obsessive-compulsive disorder, or posttraumatic stress disorder. Data Extraction and Synthesis: Raw data were obtained from the authors and quality controlled. Data were ranked to ensure a consistent metric across studies (score range, 0-100). We used a 3-level multilevel model nesting repeated measures of outcomes within participants, who were nested within studies. Results: Individual participant data were obtained for 21 of 22 eligible trials, representing 1047 of 1073 eligible participants. When controlling for antidepressant use, participants receiving DCS showed greater improvement from pretreatment to posttreatment (mean difference, -3.62; 95% CI, -0.81 to -6.43; P = .01; d = -0.25) but not from pretreatment to midtreatment (mean difference, -1.66; 95% CI, -4.92 to 1.60; P = .32; d = -0.14) or from pretreatment to follow-up (mean difference, -2.98, 95% CI, -5.99 to 0.03; P = .05; d = -0.19). Additional analyses showed that participants assigned to DCS were associated with lower symptom severity than those assigned to placebo at posttreatment and at follow-up. Antidepressants did not moderate the effects of DCS. None of the prespecified patient-level or study-level moderators was associated with outcomes. Conclusions and Relevance: D-cycloserine is associated with a small augmentation effect on exposure-based therapy. This effect is not moderated by the concurrent use of antidepressants. Further research is needed to identify patient and/or therapy characteristics associated with DCS response.10 p

    Changes in Dosing and Dose Timing of D-Cycloserine Explain Its Apparent Declining Efficacy for Augmenting Exposure Therapy for Anxiety-related Disorders: An Individual Participant-data Meta-analysis

    No full text
    The apparent efficacy of d-cycloserine (DCS) for enhancing exposure treatment for anxiety disorders appears to have declined over the past 14 years. We examined whether variations in how DCS has been administered can account for this “declining effect”. We also investigated the association between DCS administration characteristics and treatment outcome to find optimal dosing parameters. We conducted a secondary analysis of individual participant data obtained from 1047 participants in 21 studies testing the efficacy of DCS-augmented exposure treatments. Different outcome measures in different studies were harmonized to a 0-100 scale. Intent-to-treat analyses showed that, in participants randomized to DCS augmentation (n = 523), fewer DCS doses, later timing of DCS dose, and lower baseline severity appear to account for this decline effect. More DCS doses were related to better outcomes, but this advantage leveled-off at nine doses. Administering DCS more than 60 minutes before exposures was also related to better outcomes. These predictors were not significant in the placebo arm (n = 521). Results suggested that optimal DCS administration could increase pre-to-follow-up DCS effect size by 50%. In conclusion, the apparent declining effectiveness of DCS over time may be accounted for by how it has been administered. Optimal DCS administration may substantially improve outcomes. Registration: The analysis plan for this manuscript was registered on Open Science Framework (https://osf.io/c39p8/)

    Changes in Dosing and Dose Timing of D-Cycloserine Explain Its Apparent Declining Efficacy for Augmenting Exposure Therapy for Anxiety-related Disorders: An Individual Participant-data Meta-analysis

    No full text
    The apparent efficacy of d-cycloserine (DCS) for enhancing exposure treatment for anxiety disorders appears to have declined over the past 14 years. We examined whether variations in how DCS has been administered can account for this “declining effect”. We also investigated the association between DCS administration characteristics and treatment outcome to find optimal dosing parameters. We conducted a secondary analysis of individual participant data obtained from 1047 participants in 21 studies testing the efficacy of DCS-augmented exposure treatments. Different outcome measures in different studies were harmonized to a 0-100 scale. Intent-to-treat analyses showed that, in participants randomized to DCS augmentation (n = 523), fewer DCS doses, later timing of DCS dose, and lower baseline severity appear to account for this decline effect. More DCS doses were related to better outcomes, but this advantage leveled-off at nine doses. Administering DCS more than 60 minutes before exposures was also related to better outcomes. These predictors were not significant in the placebo arm (n = 521). Results suggested that optimal DCS administration could increase pre-to-follow-up DCS effect size by 50%. In conclusion, the apparent declining effectiveness of DCS over time may be accounted for by how it has been administered. Optimal DCS administration may substantially improve outcomes.Stress and Psychopatholog

    The Effects of Ionizing Radiation on the Oral Cavity

    No full text
    corecore