599 research outputs found

    Epidemic and pandemic viral infections: Impact on tuberculosis and the lung

    Get PDF
    Major epidemics, including some that qualify as pandemics, such as severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), HIV, influenza A (H1N1)pdm/09 and most recently COVID-19, affect the lung. Tuberculosis (TB) remains the top infectious disease killer, but apart from syndemic TB/HIV little is known regarding the interaction of viral epidemics and pandemics with TB. The aim of this consensus-based document is to describe the effects of viral infections resulting in epidemics and pandemics that affect the lung (MERS, SARS, HIV, influenza A (H1N1)pdm/09 and COVID-19) and their interactions with TB. A search of the scientific literature was performed. A writing committee of international experts including the European Centre for Disease Prevention and Control Public Health Emergency (ECDC PHE) team, the World Association for Infectious Diseases and Immunological Disorders (WAidid), the Global Tuberculosis Network (GTN), and members of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Mycobacterial Infections (ESGMYC) was established. Consensus was achieved after multiple rounds of revisions between the writing committee and a larger expert group. A Delphi process involving the core group of authors (excluding the ECDC PHE team) identified the areas requiring review/consensus, followed by a second round to refine the definitive consensus elements. The epidemiology and immunology of these viral infections and their interactions with TB are discussed with implications for diagnosis, treatment and prevention of airborne infections (infection control, viral containment and workplace safety). This consensus document represents a rapid and comprehensive summary on what is known on the topic

    Combined Use of Mycobacterium tuberculosis-Specific CD4 and CD8 T-Cell Responses Is a Powerful Diagnostic Tool of Active Tuberculosis.

    Get PDF
    Immune-based assays are promising tools to help to formulate diagnosis of active tuberculosis. A multiparameter flow cytometry assay assessing T-cell responses specific to Mycobacterium tuberculosis and the combination of both CD4 and CD8 T-cell responses accurately discriminated between active tuberculosis and latent infection

    Multiple antimicrobial and immune-modulating activities of cysteamine in infectious diseases

    Get PDF
    Infectious diseases are a major threat to global health and cause millions of deaths every year, particularly in developing countries. The emergence of multidrug resistance challenges current antimicrobial treatments, inducing uncertainty in therapeutic protocols. New compounds are therefore necessary. A drug repurposing approach could play a critical role in developing new treatments used either alone or in combination with standard therapy regimens. Herein, we focused on cysteamine, an aminothiol endogenously synthesized by human cells during the degradation of coenzyme-A, which is a drug approved for the treatment of nephropathic cystinosis. Cysteamine influences many biological processes due to the presence of the highly reactive thiol group. This review provides an overview of cysteamine-mediated effects on different viruses, bacteria and parasites, with a particular focus on infections caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), Mycobacterium tuberculosis, non-tuberculous mycobacteria (NTM), and Pseudomonas aeruginosa. Evidences for a potential use of cysteamine as a direct antimicrobial agent and/or a host-directed therapy, either alone or in combination with other antimicrobial drugs, are described

    The Importance of Measuring SARS-CoV-2-Specific T-Cell Responses in an Ongoing Pandemic

    Get PDF
    Neutralizing antibodies are considered a correlate of protection against SARS-CoV-2 infection and severe COVID-19, although they are not the only contributing factor to immunity: T-cell responses are considered important in protecting against severe COVID-19 and contributing to the success of vaccination effort. T-cell responses after vaccination largely mirror those of natural infection in magnitude and functional capacity, but not in breadth, as T-cells induced by vaccination exclusively target the surface spike glycoprotein. T-cell responses offer a long-lived line of defense and, unlike humoral responses, largely retain reactivity against the SARS-CoV-2 variants. Given the increasingly recognized role of T-cell responses in protection against severe COVID-19, the circulation of SARS-CoV-2 variants, and the potential implementation of novel vaccines, it becomes imperative to continuously monitor T-cell responses. In addition to “classical” T-cell assays requiring the isolation of peripheral blood mononuclear cells, simple whole-blood-based interferon-γ release assays have a potential role in routine T-cell response monitoring. These assays could be particularly useful for immunocompromised people and other clinically vulnerable populations, where interactions between cellular and humoral immunity are complex. As we continue to live alongside COVID-19, the importance of considering immunity as a whole, incorporating both humoral and cellular responses, is crucial.</p

    IP-10 response to RD1 antigens might be a useful biomarker for monitoring tuberculosis therapy

    Get PDF
    Background There is an urgent need of prognosis markers for tuberculosis (TB) to improve treatment strategies. The results of several studies show that the Interferon (IFN)-γ-specific response to the TB antigens of the QuantiFERON TB Gold (QFT-IT antigens) decreases after successful TB therapy. The objective of this study was to evaluate whether there are factors other than IFN-γ [such as IFN-γ inducible protein (IP)-10 which has also been associated with TB] in response to QFT-IT antigens that can be used as biomarkers for monitoring TB treatment. Methods In this exploratory study we assessed the changes in IP-10 secretion in response to QFT-IT antigens and RD1 peptides selected by computational analysis in 17 patients with active TB at the time of diagnosis and after 6 months of treatment. The IFN-γ response to QFT-IT antigens and RD1 selected peptides was evaluated as a control. A non-parametric Wilcoxon signed-rank test for paired comparisons was used to compare the continuous variables at the time of diagnosis and at therapy completion. A Chi-square test was used to compare proportions. Results We did not observe significant IP-10 changes in whole blood from either NIL or QFT-IT antigen tubes, after 1-day stimulation, between baseline and therapy completion (p = 0.08 and p = 0.7 respectively). Conversely, the level of IP-10 release to RD1 selected peptides was significantly different (p = 0.006). Similar results were obtained when we detected the IFN-γ in response to the QFT-IT antigens (p = 0.06) and RD1 selected peptides (p = 0.0003). The proportion of the IP-10 responders to the QFT-IT antigens did not significantly change between baseline and therapy completion (p = 0.6), whereas it significantly changed in response to RD1 selected peptides (p = 0.002). The proportion of IFN-γ responders between baseline and therapy completion was not significant for QFT-IT antigens (p = 0.2), whereas it was significant for the RD1 selected peptides (p = 0.002), confirming previous observations. Conclusions Our preliminary study provides an interesting hypothesis: IP-10 response to RD1 selected peptides (similar to IFN-γ) might be a useful biomarker for monitoring therapy efficacy in patients with active TB. However, further studies in larger cohorts are needed to confirm the consistency of these study results

    Uloga testova otpuštanja interferona gama u nadzoru nad tuberkulozom

    Get PDF
    Tuberculosis is still one of the major global public health threats. Countries with low incidence must focus on exhausting the reservoir of future cases by preventing reactivation. Therefore, it is important to identify and effectively treat those individuals who have latent tuberculosis infection and who may develop active disease. The tuberculin skin test has been the standard for detection of immune response against M. tuberculosis since the beginning of the 20th century. The new millennium has brought advancement in the diagnosis of latent tuberculosis infection. The name of the new blood test is interferon-gamma release assay (IGRA). Croatia is a middle-incidence country with a long decreasing trend and developed tuberculosis control. To reach low incidence and finally eliminate tuberculosis, its tuberculosis programme needs a more aggressive approach that would include intensive contact investigation and treatment of persons with latent tuberculosis infection. This article discusses the current uses of IGRA and its role in tuberculosis control.Tuberkuloza je i danas jedan od vodećih javnozdravstvenih problema. Zemlje s niskom incidencijom fokusiraju se na iscrpljivanje rezervoara budućih slučajeva sprječavanjem reaktivacije bolesti. To se odnosi na traženje i učinkovito liječenje infi ciranih osoba, primarno onih koje su u riziku od obolijevanja nakon infekcije. Tuberkulinski test je od početka 20. stoljeća bio standard u otkrivanju imunosnog odgovora na kontakt s Mycobacterium tuberculosis. Novo tisućljeće donijelo je određeni napredak u obliku novih testova za dijagnozu latentne tuberkulozne infekcije, krvne testove otpuštanja interferona gama. Hrvatska je zemlja srednje incidencije tuberkuloze s dugogodišnjim silaznim trendom i razvijenim protutuberkuloznim aktivnostima. U težnji prema niskoj incidenciji i u konačnici eliminaciji tuberkuloze potrebne su opsežnije aktivnosti unutar državnog programa nadzora nad tuberkulozom, uključujući intenzivnu obradu kontakata i probir na postojanje latentne tuberkulozne infekcije. Ovaj rad razmatra trenutačnu uporabu IGRE (engl. interferon - gamma release assay) i njezinu ulogu u nadzoru nad tuberkulozom

    New tools for detecting latent tuberculosis infection: evaluation of RD1-specific long-term response

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Interferon-gamma (IFN-γ) release assays (IGRAs) were designed to detect latent tuberculosis infection (LTBI). However, discrepancies were found between the tuberculin skin test (TST) and IGRAs results that cannot be attributed to prior Bacille Calmètte Guerin vaccinations. The aim of this study was to evaluate tools for improving LTBI diagnosis by analyzing the IFN-γ response to RD1 proteins in prolonged (long-term response) whole blood tests in those subjects resulting negative to assays such as QuantiFERON-TB Gold In tube (QFT-IT).</p> <p>Methods</p> <p>The study population included 106 healthy TST<sup>+ </sup>individuals with suspected LTBI (recent contact of smear-positive TB and homeless) consecutively enrolled. As controls, 13 healthy subjects unexposed to <it>M. tuberculosis </it>(TST<sup>-</sup>, QFT-IT<sup>-</sup>) and 29 subjects with cured pulmonary TB were enrolled. IFN-γ whole blood response to RD1 proteins and QFT-IT were evaluated at day 1 post-culture. A prolonged test evaluating long-term IFN-γ response (7-day) to RD1 proteins in diluted whole blood was performed.</p> <p>Results</p> <p>Among the enrolled TST<sup>+ </sup>subjects with suspected LTBI, 70/106 (66.0%) responded to QFT-IT and 64/106 (60.3%) to RD1 proteins at day 1. To evaluate whether a prolonged test could improve the detection of LTBI, we set up the test using cured TB patients (with a microbiologically diagnosed past pulmonary disease) who resulted QFT-IT-negative and healthy controls as comparator groups. Using this assay, a statistically significant difference was found between IFN-γ levels in cured TB patients compared to healthy controls (p < 0.006). Based on these data, we constructed a receiver operating characteristic (ROC) curve and we calculated a cut-off. Based on the cut-off value, we found that among the 36 enrolled TST+ subjects with suspected LTBI not responding to QFT-IT, a long term response to RD1 proteins was detected in 11 subjects (30.6%).</p> <p>Conclusion</p> <p>These results indicate that IFN-γ long-term response to <it>M. tuberculosis </it>RD1 antigens may be used to detect past infection with <it>M. tuberculosis </it>and may help to identify additional individuals with LTBI who resulted negative in the short-term tests. These data may provide useful information for improving immunodiagnostic tests for tuberculosis infection, especially in individuals at high risk for active TB.</p
    corecore