123 research outputs found

    Cisplatin Tumor Biodistribution and Efficacy after Intratumoral Injection of a Biodegradable Extended Release Implant

    Get PDF
    Local delivery of chemotherapeutic drugs has long been recognized as a potential method for reaching high drug doses at the target site while minimizing systemic exposure. Cisplatin is one of the most effective chemotherapeutic agents for the treatment of various tumors; however, its systemic toxicity remains the primary dose-limiting factor. Here we report that incorporation of cisplatin into a fatty acid-based polymer carrier followed by a local injection into the solid tumor resulted in a successful tumor growth inhibition in heterotopic mouse bladder tumor model in mice. Platinum concentration in the tumor tissue surrounding the injected implant remained above the therapeutic level up to 14 days after the injection, while the plasma levels were several orders of magnitude lower comparing to systemic delivery. The reported delivery system increased the maximum tolerated dose of cisplatin 5 times compared to systemic delivery, thus potentially improving antitumor efficacy of cisplatin in solid tumor model

    Endothelial Cells Potentiate Interferon-γ Production in a Novel Tripartite Culture Model of Human Cerebral Malaria

    Get PDF
    We have established a novel in vitro co-culture system of human brain endothelial cells (HBEC), Plasmodium falciparum parasitised red blood cells (iRBC) and peripheral blood mononuclear cells (PBMC), in order to simulate the chief pathophysiological lesion in cerebral malaria (CM). This approach has revealed a previously unsuspected pro-inflammatory role of the endothelial cell through potentiating the production of interferon (IFN)-γ by PBMC and concurrent reduction of interleukin (IL)-10. The IFN-γ increased the expression of CXCL10 and intercellular adhesion molecule (ICAM)-1, both of which have been shown to be crucial in the pathogenesis of CM. There was a shift in the ratio of IL-10:IFN-γ protein from >1 to <1 in the presence of HBEC, associated with the pro-inflammatory process in this model. For this to occur, a direct contact between PBMC and HBEC, but not PBMC and iRBC, was necessary. These results support HBEC playing an active role in the pathogenesis of CM. Thus, if these findings reflect the pathogenesis of CM, inhibition of HBEC and PBMC interactions might reduce the occurrence, or improve the prognosis, of the condition. © 2013 Khaw et al

    Anti-plasmodial polyvalent interactions in Artemisia annua L. aqueous extract – possible synergistic and resistance mechanisms

    Get PDF
    Artemisia annua hot water infusion (tea) has been used in in vitro experiments against P. falciparum malaria parasites to test potency relative to equivalent pure artemisinin. High performance liquid chromatography (HPLC) and mass spectrometric analyses were employed to determine the metabolite profile of tea including the concentrations of artemisinin (47.5±0.8 mg L-1), dihydroartemisinic acid (70.0±0.3 mg L-1), arteannuin B (1.3±0.0 mg L-1), isovitexin (105.0±7.2 mg L-1) and a range of polyphenolic acids. The tea extract, purified compounds from the extract, and the combination of artemisinin with the purified compounds were tested against chloroquine sensitive and chloroquine resistant strains of P. falciparum using the DNA-intercalative SYBR Green I assay. The results of these in vitro tests and of isobologram analyses of combination effects showed mild to strong antagonistic interactions between artemisinin and the compounds (9-epi-artemisinin and artemisitene) extracted from A. annua with significant (IC50 <1 μM) anti-plasmodial activities for the combination range evaluated. Mono-caffeoylquinic acids, tri-caffeoylquinic acid, artemisinic acid and arteannuin B showed additive interaction while rosmarinic acid showed synergistic interaction with artemisinin in the chloroquine sensitive strain at a combination ratio of 1:3 (artemisinin to purified compound). In the chloroquine resistant parasite, using the same ratio, these compounds strongly antagonised artemisinin anti-plasmodial activity with the exception of arteannuin B, which was synergistic. This result would suggest a mechanism targeting parasite resistance defenses for arteannuin B’s potentiation of artemisinin

    Coartem®: the journey to the clinic

    Get PDF
    Artemisinin, from which the artemether component of Coartem®(artemether/lumefantrine, AL) is derived, is obtained from the plant sweet wormwood (Artemisia annua) which has been used for over 2,000 years as a Chinese herbal remedy. Artemisinin was first identified by Chinese researchers as the active anti-malarial constituent of A. annua and its derivatives were found to be the most potent of all anti-malarial drugs. Artemether acts rapidly, reducing the infecting parasite biomass by approximately 10,000-fold per asexual life cycle. Lumefantrine, the other active constituent of AL, acts over a longer period to eliminate the residual 100-100,000 parasites that remain after artemether is cleared from the body and thus minimizes the risk of recrudescence. The two agents have different modes of action and act at different points in the parasite life cycle and show a synergistic action against Plasmodium falciparum in vitro. The combination of artemether and lumefantrine reduces the risk of resistance developing to either agent, and to date there are no reports of resistance to AL combined therapy in the malaria parasite that infects humans. Following a unique partnership agreement between Chinese authorities and Novartis, the manufacturer of AL, over 20 sponsored clinical studies have been undertaken in various malaria endemic regions and in travellers. These trials have involved more than 3,500 patients (including over 2,000 children), and led to identification of a six-dose, three-day regimen as the optimal dosing strategy for AL in uncomplicated falciparum malaria. AL has consistently shown 28-day polymerase chain (PCR)-corrected cure rates greater than 95% in the evaluable population, meeting WHO recommendations. More recently, Novartis and the Medicines for Malaria Venture have worked in partnership to develop Coartem® Dispersible, a new formulation designed specifically to meet the specific needs of children with malaria. The dispersible tablets have shown similar high response rates to those observed with crushed standard tablets of AL. A partnership agreement between Novartis and WHO has seen over 250 million AL (Coartem®) treatments (75% for children) being distributed to malaria patients in developing countries without profit, supported by training programmes and educational resources

    Intravenous pharmacokinetics, oral bioavailability, dose proportionality and in situ permeability of anti-malarial lumefantrine in rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite the wide spread use of lumefantrine, there is no study reporting the detailed preclinical pharmacokinetics of lumefantrine. For the development of newer anti-malarial combination(s) and selection of better partner drugs, it is long felt need to understand the detailed preclinical pharmacokinetics of lumefantrine in preclinical experimental animal species. The focus of present study is to report bioavailability, pharmacokinetics, dose linearity and permeability of lumefantrine in rats.</p> <p>Methods</p> <p>A single dose of 10, 20 or 40 mg/kg of lumefantrine was given orally to male rats (N = 5 per dose level) to evaluate dose proportionality. In another study, a single intravenous bolus dose of lumefantrine was given to rats (N = 4) at 0.5 mg/kg dose following administration through the lateral tail vein in order to obtain the absolute oral bioavailability and clearance parameters. Blood samples were drawn at predetermined intervals and the concentration of lumefantrine and its metabolite desbutyl-lumefantrine in plasma were determined by partially validated LC-MS/MS method. <it>In-situ </it>permeability study was carried in anaesthetized rats. The concentration of lumefantrine in permeability samples was determined using RP-HPLC.</p> <p>Results</p> <p>For nominal doses increasing in a 1:2:4 proportion, the C<sub>max </sub>and AUC<sub>0-∞ </sub>values increased in the proportions of 1:0.6:1.5 and 1:0.8:1.8, respectively. For lumefantrine nominal doses increasing in a 1:2:4 proportion, the C<sub>max </sub>and the AUC<sub>0-t </sub>values for desbutyl-lumefantrine increased in the proportions of 1:1.45:2.57 and 1:1.08:1.87, respectively. After intravenous administration the clearance (Cl) and volume of distribution (Vd) of lumefantrine in rats were 0.03 (± 0.02) L/h/kg and 2.40 (± 0.67) L/kg, respectively. Absolute oral bioavailability of lumefantrine across the tested doses ranged between 4.97% and 11.98%. Lumefantrine showed high permeability (4.37 × 10<sup>-5 </sup>cm/s) in permeability study.</p> <p>Conclusions</p> <p>The pharmacokinetic parameters of lumefantrine and its metabolite desbutyl-lumefantrine were successfully determined in rats for the first time. Lumefantrine displayed similar pharmacokinetics in the rat as in humans, with multiphasic disposition, low clearance, and a large volume of distribution resulting in a long terminal elimination half-life. The absolute oral bioavailability of lumefantrine was found to be dose dependent. Lumefantrine displayed high permeability in the <it>in-situ </it>permeability study.</p

    Glatiramer acetate reduces the risk for experimental cerebral malaria: a pilot study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cerebral malaria (CM) is associated with high mortality and morbidity caused by a high rate of transient or persistent neurological sequelae. Studies on immunomodulatory and neuroprotective drugs as ancillary treatment in murine CM indicate promising potential. The current study was conducted to evaluate the efficacy of glatiramer acetate (GA), an immunomodulatory drug approved for the treatment of relapsing remitting multiple sclerosis, in preventing the death of C57Bl/6J mice infected with <it>Plasmodium berghei </it>ANKA.</p> <p>Methods and Results</p> <p>GA treatment led to a statistically significant lower risk for developing CM (57.7% versus 84.6%) in treated animals. The drug had no effect on the course of parasitaemia. The mechanism of action seems to be an immunomodulatory effect since lower IFN-gamma levels were observed in treated animals in the early course of the disease (day 4 post-infection) which also led to a lower number of brain sequestered leukocytes in treated animals. No direct neuro-protective effect such as an inhibition of apoptosis or reduction of micro-bleedings in the brain was found.</p> <p>Conclusion</p> <p>These findings support the important role of the host immune response in the pathophysiology of murine CM and might lead to the development of new adjunctive treatment strategies.</p

    NADPH Phagocyte Oxidase Knockout Mice Control Trypanosoma cruzi Proliferation, but Develop Circulatory Collapse and Succumb to Infection

    Get PDF
    •NO is considered to be a key macrophage-derived cytotoxic effector during Trypanosoma cruzi infection. On the other hand, the microbicidal properties of reactive oxygen species (ROS) are well recognized, but little importance has been attributed to them during in vivo infection with T. cruzi. In order to investigate the role of ROS in T. cruzi infection, mice deficient in NADPH phagocyte oxidase (gp91phox−/− or phox KO) were infected with Y strain of T. cruzi and the course of infection was followed. phox KO mice had similar parasitemia, similar tissue parasitism and similar levels of IFN-γ and TNF in serum and spleen cell culture supernatants, when compared to wild-type controls. However, all phox KO mice succumbed to infection between day 15 and 21 after inoculation with the parasite, while 60% of wild-type mice were alive 50 days after infection. Further investigation demonstrated increased serum levels of nitrite and nitrate (NOx) at day 15 of infection in phox KO animals, associated with a drop in blood pressure. Treatment with a NOS2 inhibitor corrected the blood pressure, implicating NOS2 in this phenomenon. We postulate that superoxide reacts with •NO in vivo, preventing blood pressure drops in wild type mice. Hence, whilst superoxide from phagocytes did not play a critical role in parasite control in the phox KO animals, its production would have an important protective effect against blood pressure decline during infection with T. cruzi

    Ca2+ monitoring in Plasmodium falciparum using the yellow cameleon-Nano biosensor

    Get PDF
    Calcium (Ca2+)-mediated signaling is a conserved mechanism in eukaryotes, including the human malaria parasite, Plasmodium falciparum. Due to its small size (300?nM). We determined that the mammalian SERCA inhibitor thapsigargin and antimalarial dihydroartemisinin did not perturb SERCA activity. The change of the cytosolic Ca2+ level in P. falciparum was additionally detectable by flow cytometry. Thus, we propose that the developed YC-Nano-based system is useful to study Ca2+ signaling in P. falciparum and is applicable for drug screening.We are grateful to Japanese Red Cross Blood Society for providing human RBC and plasma. We also thank Tanaka R, Ogoshi (Sakura) M and Matsumoto N for technical assistance and Templeton TJ for critical reading. This study was conducted at the Joint Usage / Research Center on Tropical Disease, Institute of Tropical Medicine, Nagasaki University, Japan. KP was a Tokyo Biochemical Research Foundation (TBRF, http://www.tokyobrf.or.jp) post-doctoral fellow and PEF was a Japanese Society of Promotion Sciences (JSPS) post-doctoral fellow. This work was supported in part by the TBRF (K.P.), JSPS (P.E.F.), Takeda Science Foundation (K.Y.), Grants-in-Aids for Scientific Research 24590509 (K.Y.), 22390079 (O.K.), and for Scientific Research on Innovative Areas 23117008 (O.K.), MEXT, Japan. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
    corecore