25 research outputs found

    Spatially broad opening of the blood-brain barrier with an unfocused ultrasound transducer in rabbits

    Get PDF
    International audienceThe aim of this work was to study the opening of the blood-brain barrier (BBB) over a large volume using an unfocused ultrasound device in the presence of ultrasound contrast agents in rabbits. A mono-element planar 1MHz ultrasound transducer was used to perform burst sonications in 24 healthy New-Zealand white rabbits after craniectomy and during intravenous injection of Sonovue®. The transducer was operated with a pulse repetition frequency of 1Hz, and a range of pulses lengths and in situ acoustic pressures (10-35ms and 0.3-1MPa respectively). Opening of the BBB was observed in contrast-enhanced images in a 4.7T MRI, through blue dye extravasation and with confocal microscopy. Adverse effects were analyzed on histology. A significant BBB opening limited spatially to the extent of the ultrasound field was observed. BBB opening appeared during the sonication and lasted for several hours. Monitoring was possible on MRI sequences as a significant gadolinium contrast enhancement (p<0.0001). BBB opening was associated with perivascular blood red cell extravasation and transient vascular spasm. In conclusion, the BBB can be opened in large areas of the brain with low power unfocused ultrasound, with limited tissue damage, and could permit safe drug delivery in the brain. Work supported by CarThera and Région Ile-de-France

    JAK inhibition in Aicardi-Goutières syndrome: a monocentric multidisciplinary real-world approach study

    Get PDF
    International audienceThe paradigm type I interferonopathy Aicardi-Goutières syndrome (AGS) is most typically characterized by severe neurological involvement. AGS is considered an immune-mediated disease, poorly responsive to conventional immunosuppression. Premised on a chronic enhancement of type I interferon signaling, JAK1/2 inhibition has been trialed in AGS, with clear improvements in cutaneous and systemic disease manifestations. Contrastingly, treatment efficacy at the level of the neurological system has been less conclusive. Here, we report our real-word approach study of JAK1/2 inhibition in 11 patients with AGS, providing extensive assessments of clinical and radiological status; interferon signaling, including in cerebrospinal fluid (CSF); and drug concentrations in blood and CSF. Over a median follow-up of 17 months, we observed a clear benefit of JAK1/2 inhibition on certain systemic features of AGS, and reproduced results reported using the AGS neurologic severity scale. In contrast, there was no change in other scales assessing neurological status; using the caregiver scale, only patient comfort, but no other domain of everyday-life care, was improved. Serious bacterial infections occurred in 4 out of the 11 patients. Overall, our data lead us to conclude that other approaches to treatment are urgently required for the neurologic features of AGS. We suggest that earlier diagnosis and adequate central nervous system penetration likely remain the major factors determining the efficacy of therapy in preventing irreversible brain damage, implying the importance of early and rapid genetic testing and the consideration of intrathecal drug delivery

    Impact of angiogenesis inhibitors and efflux transporters expression on brain and tumor dstribution of chemotherapy used in glioblastoma treatment

    No full text
    Les glioblastomes sont les tumeurs cérébrales les plus fréquentes avec une incidence en France de l'ordre de 4 nouveaux cas par an et pour 100 000 habitants (2400/ an). Le traitement standard pharmacologique des glioblastomes nouvellement diagnostiqués consiste en première ligne en une administration de témozolomide (75 mg/m2/j) pendant la radiothérapie, suivie d’une consolidation de 6 cycles. Cependant, malgré ce traitement, la médiane de survie n’est que de 15 mois et de 3 à 9 mois pour les rechutes. De nouvelles approches thérapeutiques sont donc indispensables. Parmi elles, ont été évalués le recours à d’autres chimiothérapies (irinotecan) et à l’inhibition de l’angiogénèse. L'angiogenèse est en effet un processus critique dans la progression GBM. L'inhibition de l'angiogenèse, induisant une réduction des vaisseaux sanguins, permet une diminution de l’apport des nutriments et d'oxygène à la tumeur. De manière générale, l’efficacité des traitements du glioblastome est soumise, dans un premier temps, à leur passage intra-cérébral au travers de la barrière hémato-encéphalique (BHE). L’objectif de notre travail était d’une part d’étudier l’impact de l’expression du transporteur d’efflux ABCB1 sur la distribution cérébrale du témozolomide (TMZ) et de l’irinotecan (CPT-11), et d’autre part, d’évaluer le rôle du bevacizumab (BVZ)(inhibiteur de l’angiogénèse) dans la modulation du passage intra-cérébral et intra-tumoral du TMZ et du CPT-11. A l'aide d'une étude pharmacocinétique comparative chez les souris CF1 mdr1a (+/+) et les souris CF1 mdr1a (-/-), nous avons mis en évidence un efflux actif du TMZ, du CPT-11 et de son métabolite actif le SN-38 du cerveau vers le plasma, impliquant ABCB1 au niveau de la BHE. Nous avons également démontré in vivo que le TMZ s'accumule dans la tumeur cérébrale et que le prétraitement par BVZ augmente la distribution tumorale de TMZ. En revanche, le BVZ n’a montré aucun effet sur la distribution cérébrale ou tumorale du CPT-11. Le BVZ apparaitrait donc comme un moyen intéressant d’augmenter la distribution intratumorale du TMZ. Dans ce même objectif, une collaboration initiée dans le cadre de cette thèse a permis de mettre en évidence l’intérêt de l’utilisation d’ultrasons dans l’ouverture de la BHE et l’amélioration de la distribution cérébrale des médicaments.Glioblastomas are the most common brain tumors occurring in France with an incidence of 4 new cases per year per 100 000 population (2400/year). The gold standard pharmacological treatment of newly diagnosed glioblastoma relies on temozolomide administration (75 mg/m2/d) concomitant to radiotherapy, followed by six cycles consolidation. However, despite this treatment, the median survival is only 15 months and relapse occurs within 3 to 9 months. New therapeutic approaches are needed. Among them, other chemotherapies (irinotecan) and inhibition of angiogenesis were explored. Angiogenesis is a critical process in GBM progression. Inhibition of angiogenesis, inducing a reduction of the blood vessels, reduces supply of nutrients and oxygen to the tumor. The effectiveness of GBM treatment is subjected to intra-brain diffusion through the blood-brain barrier. The objective of this study was firstly to study the impact of efflux transporter ABCB1 brain expression on temozolomide (TMZ) and irinotecan (CPT-11) brain distribution, and secondly, to assess the role of bevacizumab (BVZ)(angiogenesis inhibitor) in the modulation of TMZ and CPT-11 brain and tumor distribution. Using a comparative pharmacokinetic study in CF1 mdr1a (+/+) and CF1 mdr1a (-/-) mice, we demonstrated an active efflux of TMZ, CPT-11 and its active metabolite SN-38 from the brain to the plasma involving ABCB1. We also demonstrated in vivo that TMZ accumulates in brain tumor and BVZ pretreatment increased TMZ tumor distribution. However no effect of BVZ on CPT-11 brain or tumor distribution was evidenced. Therefore BVZ would appear to be an interesting way to increase TMZ tumor distribution. The same objective was pursued through a different approach using ultrasound unfocused to open the BBB (Carthera collaboration)

    Incomplete copolymer degradation of in situ chemotherapy

    No full text
    International audienceIn situ carmustine wafers containing 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) are commonly used for the treatment of recurrent glioblastoma to overcome the brain-blood barrier. In theory, this chemotherapy diffuses into the adjacent parenchyma and the excipient degrades in maximum 8 weeks but no clinical data confirms this evolution, because patients are rarely operated again. A 75-year-old patient was operated twice for recurrent glioblastoma, and a carmustine wafer was implanted during the second surgery. Eleven months later, a third surgery was performed, revealing unexpected incomplete degradation of the wafer. 1H-Nuclear Magnetic Resonance was performed to compare this wafer to pure BCNU and to an unused copolymer wafer. In the used wafer, peaks corresponding to hydrophobic units of the excipient were no longer noticeable, whereas peaks of the hydrophilic units and traces of BCNU were still present. These surprising results could be related to the formation of a hydrophobic membrane around the wafer, thus interfering with the expected diffusion and degradation processes. The clinical benefit of carmustine wafers in addition to the standard radio-chemotherapy remains limited, and in vivo behavior of this treatment is not completely elucidated yet. We found that the wafer may remain after several months. Alternative strategies to deal with the blood–brain barrier, such as drug-loaded liposomes or ultrasound-opening, must be explored to offer larger drug diffusion or allow repetitive delivery

    Blood-brain barrier, cytotoxic chemotherapies and glioblastoma

    No full text
    International audienceIntroduction: Glioblastomas (GBM) are the most common and aggressive primary malignant brain tumors in adults. The blood brain barrier (BBB) is a major limitation reducing efficacy of anti-cancer drugs in the treatment of GBM patients.Areas covered: Virtually all GBM recur after the first-line treatment, at least partly, due to invasive tumor cells protected from chemotherapeutic agents by the intact BBB in the brain adjacent to tumor. The passage through the BBB, taken by antitumor drugs, is poorly and heterogeneously documented in the literature. In this review, we have focused our attention on: (i) the BBB, (ii) the passage of chemotherapeutic agents across the BBB and (iii) the strategies investigated to overcome this barrier.Expert commentary: A better preclinical knowledge of the crossing of the BBB by antitumor drugs will allow optimizing their clinical development, alone or combined with BBB bypassing strategies, towards an increased success rate of clinical trials

    Improved HPLC Quantification of 6-Mercaptopurine Metabolites in Red Blood Cells: Monitoring Data and Literature Analysis

    No full text
    Thiopurine drugs azathioprine (AZA) and 6-mercaptopurine (6-MP) are used extensively in pediatric and adult patients with inflammatory and neoplastic diseases. They are metabolized to 6-thioguanine nucleotides (6-TGN) or to 6-methyl-mercaptopurine nucleotides (6-MMPN). The balance between 6-TGN and 6-MMPN is highly variable and monitoring is recommended, but its benefit in outcome gives rise to conflicting results, potentially increased by differences in quantifying 6-MP metabolism. Our aim was to report (1) the HPLC-UV procedure used in our laboratory to quantify red blood cells (RBCs) with 6-TGN and 6-MMPN (as its derivate: 6-MMP(d)) in patients treated with thiopurines and (2) additional tests, sometimes confirmatory, to improve method standardization. The comparison of two methods to count RBCs shows that metabolite concentrations were slightly lower in the washed and resuspended RBCs than in whole blood. Perchloric acid (0.7 M), dithiothreitol (DTT, final 0.013 M sample concentration) and 60 min hydrolysis were selected for acid hydrolysis. (3) Monitoring data from 83 patients receiving AZA or 6-MP showed that at steady state, only 53/183 (29%) had 6-TGN and 6-MMPN in the recommended therapeutic range. Our method is discussed in light of the technical conditions and sample stability data from 17 publications identified since the first analytical report in 1987. Monitoring data demonstrate, if required, that inter-patient variability in 6-TGN and 6-MMPN concentrations is high in samples from treated patients

    Spatially broad opening of the blood-brain barrier with an unfocused ultrasound transducer in rabbits

    No full text
    International audienceThe aim of this work was to study the opening of the blood-brain barrier (BBB) over a large volume using an unfocused ultrasound device in the presence of ultrasound contrast agents in rabbits. A mono-element planar 1MHz ultrasound transducer was used to perform burst sonications in 24 healthy New-Zealand white rabbits after craniectomy and during intravenous injection of Sonovue®. The transducer was operated with a pulse repetition frequency of 1Hz, and a range of pulses lengths and in situ acoustic pressures (10-35ms and 0.3-1MPa respectively). Opening of the BBB was observed in contrast-enhanced images in a 4.7T MRI, through blue dye extravasation and with confocal microscopy. Adverse effects were analyzed on histology. A significant BBB opening limited spatially to the extent of the ultrasound field was observed. BBB opening appeared during the sonication and lasted for several hours. Monitoring was possible on MRI sequences as a significant gadolinium contrast enhancement (p<0.0001). BBB opening was associated with perivascular blood red cell extravasation and transient vascular spasm. In conclusion, the BBB can be opened in large areas of the brain with low power unfocused ultrasound, with limited tissue damage, and could permit safe drug delivery in the brain. Work supported by CarThera and Région Ile-de-France
    corecore