29,453 research outputs found

    Ion mass spectrometer

    Get PDF
    An ion mass spectrometer is described which detects and indicates the characteristics of ions received over a wide angle, and which indicates the mass to charge ratio, the energy, and the direction of each detected ion. The spectrometer includes a magnetic analyzer having a sector magnet that passes ions received over a wide angle, and an electrostatic analyzer positioned to receive ions passing through the magnetic analyzer. The electrostatic analyzer includes a two dimensional ion sensor at one wall of the analyzer chamber, that senses not only the lengthwise position of the detected ion to indicate its mass to charge ratio, but also detects the ion position along the width of the chamber to indicate the direction in which the ion was traveling

    Method and apparatus for contour mapping using synthetic aperture radar

    Get PDF
    By using two SAR antennas spaced a known distance, B, and oriented at substantially the same look angle to illuminate the same target area, pixel data from the two antennas may be compared in phase to determine a difference delta phi from which a slant angle theta is determined for each pixel point from an equation Delta phi = (2 pi B/lambda)sin(theta - alpha), where lambda is the radar wavelength and alpha is the roll angle of the aircraft. The height, h, of each pixel point from the aircraft is determined from the equation h = R cos theta, and from the known altitude, a, of the aircraft above sea level, the altitude (elevation), a', of each point is determined from the difference a - h. This elevation data may be displayed with the SAR image by, for example, quantizing the elevation at increments of 100 feet starting at sea level, and color coding pixels of the same quantized elevation. The distance, d, of each pixel from the ground track of the aircraft used for the display may be determined more accurately from the equation d = R sin theta

    Inviscid analysis of jet injection between two moving streams

    Get PDF
    An analytical method is developed for determining the flow interaction when a two-dimensional jet is injected between two moving streams. The jet is flowing out of channel and is turned as it enters between the external streams. The local velocity variation resulting from the flow interaction provides a static pressure variation along the jet bounding streamlines that is a priori unknown. Hense, the flow must be obtained by coupling the three flow regions (the jet and the free stream on either side) along the jet boundaries. Both external streams have the same total pressure, which is different from that in the jet. The solution is for the condition that the total pressure in the jet does not differ from the free-stream value by a large amount compared with the free-stream dynamic head. Results are given for the shape of the jet boundaries for various injection configurations

    Effects of stream-associated fluctuations upon the radial variation of average solar-wind parameters

    Get PDF
    The effects of nonlinear fluctuations due to solar wind streams upon radial gradients of average solar wind parameters are computed, using a numerical MHD model for both spherically symmetric time dependent and corotating equatorial flow approximations. Significant effects of correlations are found between fluctuations upon the gradients of azimuthal magnetic fields, radial velocity, density and azimuthal velocity. Between 400 to 900 solar radii stream interactions have transferred the major portion of the angular momentum flux to the magnetic field; at even greater distances the plasma again carries the bulk of the angular momentum flux. The average azimuthal component of the magnetic field may decrease as much as 10% faster than the Archimedean spiral out to 6 AU due to stream interactions, but this result is dependent upon inner boundary conditions

    Wind-driven currents in a shallow lake or sea

    Get PDF
    For shallow lakes and seas such as the great lakes (especially Lake Erie) where the depth is not much greater than the Ekman depth, the usual Ekman dynamics cannot be used to predict the wind driven currents. The necessary extension to include shallow bodies of water, given by Welander, leads to a partial differential equation for the surface displacement which in turn determines all other flow quantities. A technique for obtaining exact analytical solutions to Welander's equation for bodies of water with large class of bottom topographies which may or may not contain islands is given. It involves applying conformal mapping methods to an extension of Welander's equation into the complex plane. When the wind stress is constant (which is the usual assumption for lakes) the method leads to general solutions which hold for bodies of water of arbitrary shape (the shape appears in the solutions through a set of constants which are the coefficients in the Laurent expansion of a mapping of the particular lake geometry). The method is applied to an elliptically shaped lake and a circular lake containing an eccentrically located circular island

    Flavor-Spin Symmetry and the Tensor Charge

    Full text link
    Exploiting an approximate phenomenological symmetry of the JPC=1+−J^{PC}=1^{+-} light axial vector mesons and using pole dominance, we calculate the flavor contributions to the nucleon tensor charge. The result depends on the decay constants of the axial vector mesons and their couplings to the nucleons.Comment: Talk given at 3rd Circum-Pan-Pacific Symposium on High Energy Spin Physics (SPIN 2001), Beijing, China, 8-13 Oct 200
    • …
    corecore