25,512 research outputs found
The effect of the solar field reversal on the modulation of galactic cosmic rays
There is now a growing awareness that solar cycle related changes in the large-scale structure of the interplanetary magnetic field (IMF) may play an important role in the modulation of galactic cosmic rays. To date, attention focussed on two aspects of the magnetic field structure: large scale compression regions produced by fast solar wind streams and solar flares, both of which are known to vary in intensity and number over the solar cycle, and the variable warp of the heliospheric current sheet. It is suggested that another feature of the solar cycle is worthy of consideration: the field reversal itself. If the Sun reverses its polarity by simply overturning the heliospheric current sheet (northern fields migrating southward and vice-versa) then there may well be an effect on cosmic ray intensity. However, such a simple picture of solar reversal seems improbable. Observations of the solar corona suggest the existence of not one but several current sheets in the heliosphere at solar maximum. The results of a simple calculation to demonstrate that the variation in cosmic ray intensities that will result can be as large as is actually observed over the solar cycle are given
Ion mass spectrometer
An ion mass spectrometer is described which detects and indicates the characteristics of ions received over a wide angle, and which indicates the mass to charge ratio, the energy, and the direction of each detected ion. The spectrometer includes a magnetic analyzer having a sector magnet that passes ions received over a wide angle, and an electrostatic analyzer positioned to receive ions passing through the magnetic analyzer. The electrostatic analyzer includes a two dimensional ion sensor at one wall of the analyzer chamber, that senses not only the lengthwise position of the detected ion to indicate its mass to charge ratio, but also detects the ion position along the width of the chamber to indicate the direction in which the ion was traveling
Energetic particles of the outer regions of planetary magnetospheres
High energy particles, with energies above those attainable by adiabatic or steady-state electric field acceleration, have been observed in and around the outer regions of planetary magnetospheres. Acceleration by large amplitude sporadic cross-tail electric fields over an order of magnitude greater than steady-state convection fields is proposed as a source of these particles. It is suggested that such explosive electric fields will occur intermittently in the vicinity of the tail neutral line in the expansive phase of substorms. Laboratory and satellite evidence are used to estimate this electric potential for substorms at earth; values of 500 kilovolts to 2 megavolts are calculated, in agreement with particle observations. It is further suggested that these particles, which have been accelerated in the night side magnetosphere, drift to the dayside on closed field lines, and under certain interplanetary conditions can escape to regions upstream of the bow shock
Effects of stream-associated fluctuations upon the radial variation of average solar-wind parameters
The effects of nonlinear fluctuations due to solar wind streams upon radial gradients of average solar wind parameters are computed, using a numerical MHD model for both spherically symmetric time dependent and corotating equatorial flow approximations. Significant effects of correlations are found between fluctuations upon the gradients of azimuthal magnetic fields, radial velocity, density and azimuthal velocity. Between 400 to 900 solar radii stream interactions have transferred the major portion of the angular momentum flux to the magnetic field; at even greater distances the plasma again carries the bulk of the angular momentum flux. The average azimuthal component of the magnetic field may decrease as much as 10% faster than the Archimedean spiral out to 6 AU due to stream interactions, but this result is dependent upon inner boundary conditions
Observation of the angular momentum flux carried by the solar wind
Angular momentum flux carried by solar wind calculated from Mariner 5 dat
Ground Band and a Generalized GP-equation for Spinor Bose-Einstein Condensates
For the spinor Bose-Einstein condensates both the total spin and its
Z-component should be conserved. However, in existing theories, only
the conservation of has been taken into account. To remedy, this paper
is the first attempt to take the conservation of both and into
account. For this purpose, a total spin-state with the good quantum numbers
and is introduced in the trial wave function, thereby a generalized
Gross-Pitaevskii equation has been derived. With this new equation, the ground
bands of the Na and Rb condensates have been studied, where the
levels distinct in split. It was found that the level density is extremely
dense in the bottom of the ground band of Na, i.e., in the vicinity of
the ground state. On the contrary, for Rb, the levels are extremely
dense in the top of the ground band,Comment: 7 page, 5 figure
Fibrous refractory composite insulation
A refractory composite insulating material was prepared from silica fibers and aluminosilicate fibers in a weight ratio ranging from 1:19 to 19:1, and about 0.5 to 30% boron oxide, based on the total fiber weight. The aluminosilicate fiber and boron oxide requirements may be satisfied by using aluminoborosilicate fibers and, in such instances, additional free boron oxide may be incorporated in the mix up to the 30% limit. Small quantities of refractory opacifiers, such as silicon carbide, may be also added. The composites just described are characterized by the absence of a nonfibrous matrix
Silica reusable surface insulation
A reusable silica surface insulation material is provided by bonding amorphous silica fibers with colloidal silica at an elevated temperature. The surface insulation is ordinarily manufactured in the form of blocks (i.e., tiles)
High temperature glass thermal control structure and coating
A high temperature stable and solar radiation stable thermal control coating is described which is useful either as such, applied directly to a member to be protected, or applied as a coating on a re-usable surface insulation (RSI). It has a base coat layer and an overlay glass layer. The base coat layer has a high emittance, and the overlay layer is formed from discrete, but sintered together glass particles to give the overlay layer a high scattering coefficient. The resulting two-layer space and thermal control coating has an absorptivity-to-emissivity ratio of less than or equal to 0.4 at room temperature, with an emittance of 0.8 at 1200 F. It is capable of exposure to either solar radiation or temperatures as high as 2000 F without significant degradation. When used as a coating on a silica substrate to give an RSI structure, the coatings of this invention show significantly less reduction in emittance after long term convective heating and less residual strain than prior art coatings for RSI structures
- …