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ABSTRACT

There is now a growing awareness that solar cycle related changes in the

large-scale structure of the interplanetary magnetic field (IMF) may play an

important role in the modulation of galactic cosmic rays. To date, attention

has been focussed on two aspects of the magnetlc field structure: (I) large

scale compression regions produced by fast solar wind streams and solar flares,

both of which are known to vary in intensity and number over the solar cycle,

and (2) the variable warp of the heliospheric current sheet. In this paper we

suggest that another feature of the solar cycle is worthy of consideration: the

field reversal itself. If the sun reverses its polarity by simply overturning

the heliospheric current sheet (northern fields migrating southward and

vice-versa) then there may well be an effect on cosmic ray intensity. However,

such a simple picture of solar reversal seems improbable. Observations of the

solar corona suggest the existence of not one but several current sheets in the

heliosphere at solar maximum. This would be consistent with an interpretation

of the field reversal in which the sun "sheds" its old field and develops new

field structures of the opposite polarity (like a dog shedding its winter coat).

If this is the case then the effect on cosmic ray intensities can be

considerable. We present the results of a simple calculation to demonstrate

that the variation in cosmic ray intensities that will result can be as large as

is actually observed over the solar cycle.

INTRODUCTION

For a number of years modulation theory has been frustrated in its efforts

to account for the solar cycle variation in cosmic ray intensities by a lack of

variation in such fundamental solar wind parameters as the interplanetary field

strength, the solar wind velocity and the micro-scale turbulence of the magnetic

field. Attention has recently turned to the effect of large-scale magnetic

structures such as corotating interaction regions (Smith and Wolfe, 1976) and

flare induced shock waves (Sonett et al., 1968). These are known to vary in

both intensity and number over the solar cycle and recent studies have indicated

that they can be expected to produce significant changes in cosmic ray intensity

(Gall and Thomas, 1981, Thomas and Gall, 1982, 1983). There has also been

interest in the effect of the variable warp of the heliospheric current sheet

(Svalgaard and Wilcox, 1974), which has also been shown to be capable of

modulating cosmic rays (Kota, 1979; Jokipii and Thomas, 1981).

There is now an indication in the Pioneer and Voyager data obtained in the

outer heliosphere that the large solar flares occurring near solar maximum can

produce almost circular belts of compressed field (Smith et al., 1983). These

result in long-llved Forbush decreases of cosmic ray intensity (Van Allen 1979,
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Lockwood et al., 1980). It has been suggested that the large decrease in cosmic

ray intensity near solar maximum may be due to a cascade of these long-lived

intensity reductions (McDonald et al., 1981). The problem with this

interpretation is that flare shocks do not produce such long-lived decreases in

intensity at other times in the solar cycle. Furthermore, if the intensity is

to be held at low levels for the long periods required it is necessary to

suppress the latitudinal drift of cosmic ray particles. Otherwise particles

reaching low latitudes can have gained access to the inner heliosphere from high

latitudes where the compression effect of these flares is presumably much

reduced. Whilst these may not be regarded as strong objections, it is certainly

not clear at this time that solar flares are capable of producing the entire

modulation effect. It is our suggestion that the apparent cascade effect of

these shocks may be due to Forbush decreases (with standard recovery profiles)

superimposed on a general downward trend in cosmic ray intensity produced by a
different mechanism.

One obvious feature of solar maximum is that the magnetic field reverses

polarity. Two-hemisphere models of the solar field interpret this as an

increase in inclination of the heliospheric current sheet as solar maximum

approaches at which time the current sheet becomes vertical and overturns

(Saito, 1975; Kaburaki and Yoshii, 1979). Such a process will undoubtedly have

an effect on cosmic ray intensities (Saito et al., 1977; Swinson et al., 1981).

The major effect will be simply that a highly inclined current sheet will

propagate into the outer heliosphere with very large latitudinal warps and is a

simple extension of the analysis reported by Jokipii and Thomas (1981). It

seems improbable, however, that the field reversal process is as simple as

implied by the two-hemisphere models. The solar corona near solar maximum is

extemely complex and suggests the existence of not one but several heliospheric

current sheets. If this is the case then the simple picture of northern

hemisphere flux migrating southward and vice-versa is implausible.

The model we present is based on the hypothesis that the solar field

reverses by shedding the poloidal field of the previous solar cycle and

developing a new field of the opposite polarity. This will imply the existence

of closed field lines, for the periods near solar maximum, which will greatly

impede cosmic ray access to the inner heliosphere.

A MODEL FOR SOLAR REVERSAL

Figure i is a schematic representation of a possible mechanism by which the

solar magnetic fields may reverse. The three diagrams represent a time

sequence. The top diagram shows the interplanetary field (solid lines) as it

may appear above the solar corona at a time well before solar maximum. The

circle does not represent the sun, but the source surface of the interplanetary

magnetic field, located at 2 or 3 solar radii. Thus, all field lines are open

at this time. The middle diagram illustrates the situation near solar maximum

with isolated regions of opposite polarity now existing in the two hemispheres

separated from the background field by additional current sheets. The dashed

lines represent new field lines, associated with the developing current systems,

which are drawn into the interplanetary medium by the outflowing solar wind.

The hypothesis is that as the new regions of opposite polarity grow they push

the old flux towards lower latitudes where it is ultimately shed from the sun.

Evidence for the existence of these localised regions of anomalous polarity at
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Figure I . A schematic

representation of a model for the

solar field reversal. The upper

panel shows meridian plane

projections of field lines above

the solar corona prior to solar

maximum (the circle represents

the IMF source surface, not the

sun). The middle panel shows the

field geometry during the

reversal period with new current

systems and current sheets on the

sun producing new magnetic flux

(dashed lines). The lower panel

shows the situation shortly after

the reversal is completed with

the new flux having completely

displaced the old. The radial

distances in these diagrams have

been greatly foreshortened.
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Figure 2. A meridian plane projection

of a simple model for the hellospheric

field, shortly after solar maximum,

containing the essential features of

the lower panel in Figure i.
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Figure 3. Results of a numerical

calculation of cosmic ray intensities

at ! AU in a simple spiral (Parkerian)

field and in the closed field geometry

of Figure 2. The diffusion coefficient

is quoted for I AU (R is rigidity zn

GV).
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solar maximumhas been reported (Hoeksema et al., 1982). The lower panel
illustrates the situation shortly after solar maximumwhen the new polarity
regions have spread completely over both hemispheres, establishing the new solar
cycle, with the old field lines now completely shed from the sun. This model
for the reversal of the IMF polarity is not inconsistent with dynamomodels for
the 22 year solar cycle (e.g. Babcock, 1961; Stix 1976). If the bulk of the
IMF reversal takes place on a time scale of order one year then the new flux
will not have had time to convect to the heliospheric boundary and the field
lines in the inner heliosphere at this time will therefore be closed.

This model may be over simplified, there may be more than one region of
anomalous polarity which develops in each hemisphere and the flux shedding
process, if it occurs, will probably be spasmodic and patchy (i.e. coronal
transients or localised bubbles). However, topologically there are only two
possible interpretations for the solar reversal process. Either field lines
migrate over the solar surface or, alternatively, new flux emerges and displaces
the old. Reconnection processes may be expected to play a role in the reversal
but if isolated regions of opposite flux do develop on the sun it will not be
possible for the field lines in these regions to reconnect with the old field
from the opposite hemisphere.

A SIMPLENUMERICALMODEL

The magnetic field geometry near solar maximumresulting from the process
outlined in the previous section would be quite complex. In this section we
outline a greatly simplified model for the field geometry shortly after solar
maximum, for which solutions for the cosmic ray intensity at I AU can be
determined by numerical integration techiques. The objective is to determine if
the existence of a closed field line configuration in the inner heliosphere is
capable of providing cosmic ray modulation of the required magnitude.

Figure 2 displays the model schematically. The diagram shows only the
meridian plane componentsof the field. Over most of the diagram the azimuthal
component is dominant and the field geometry is close to an Archimedian spiral,
with a flat current sheet in the equatorial plane. For computational simplicity
the outer boundary of the heliosphere is taken to be spherical and is located at
i00 AU. Inside 20 AU the field is a pure Archimedian spiral given by the
equations :

B° (la)B = A
r

Be = A Bo _rvSin 0 (ib)
W

B e = 0 (lc)

where Vw is the solar wind velocity, __ the solar rotation frequency and Bo is
chosen to give a 5 nT field at I AU. A - ± I, chosen to give outward fields in

the northern hemisphere and inward in the southern hemisphere. This region

represents the new field after the reversal process is completed.
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Outside 80 AU the field equations are identical, but A is chosen to give

inward field in the northern hemisphere and outward in the southern hemisphere.

This region represents field from the previous solar cycle which has now been

completely shed from the sun but which has not yet convected to the model

boundary.

Between 20 and 80 AU is the transition region representing the period

during which the field reversal occurred. This corresponds to a reversal period

of approximately eight months. A simple method of closing the internal and

external field regions is given by the divergence free expressions:

B - A B (r-r o) (2a)
r o r2Ar

fl sin e (r-r o) (2b)
B+ - A B ° rV A r

w

(cose - I)
Be - A B (2c)o r Ar sine

where r_ is the interface between old and new flux located at 50 AU and _r is

the hal_-width of the transition region, 30 AU. This model actually corresponds

to a field on the sun in which the radial component dies away linearly and

builds up again in the opposite direction. Although not a representation of the

true situation it contains the essential features: separate regions of old and

new flux, closed fields in the inner heliosphere and a field geometry which is

almost Parkerian (except very near the interface). The magnitude of the

north-south component as this structure convects past 1 AU would be

approximately 1/10th nT. The effect of the radial component of the field

diminishing over the reversal period may be unrealistic but will have the

consequence of providing easier access of cosmic rays to the inner heliosphere

and so will weaken the overall modulation rather than exaggerate it.

In the numerical calculation of the cosmic ray intensity at 1 AU, which is

described in the next section, we have compared the results obtained in this

model with those obtained in the simple spiral field which will exist well away

from solar maximum. It is clear that particles will have easier access to the

inner heliosphere in the simple spiral field configuration. Particles move in

the heliosphere under a combination of diffusive propagation along the field

lines and particle drifts. In spiral fields both the field lines and the drift

patterns extend to the heliospheric boundary. In a closed field topology

exactly the opposite is true. Not only are the field lines closed but, since

particle drifts are divergence free, the drift patterns are also closed.

Therefore the particles obtain no help from either process and can gain access

to the inner heliosphere only by scattering perpendicularly to the field, across

the interface between one field region and the other.

NUMERICAL METHOD AND RESULTS

The method used involves full numerical integration of the equation of

motion (3) for individual cosmic ray protons.
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vx B (3)
dP = e(g + _1
dt c

where P, v and e are the particle momentum, velocity and charge; B the magnetic

field and E the convection electric field. The effect of scattering by magnetic

field irregularities is represented by introducing small random angular

perturbations in such a way that the desired diffusion coefficient is obtained.

The diffusion coefficient is allowed to increase in the outer heliosphere such

that the mean free path and particle gyroradius have a fixed ratio.

Perpendicular scattering is also implicit in this method with the particle

scattering typically one gyroradius perpendicular to the field in each parallel

mean free path. This leads, in these calculations, to a perpendicular diffusion

coefficient approximately 10% of the parallel coefficient. The trajectory of a

given particle is obtained by integrating backward in time, starting at i AU

until the particle reaches the model boundary at i00 AU. A power law in total

energy is assumed for the cosmic ray phase space density at the boundary. By

direct application of Liouville's theorem each particle gives an independent

estimate of the phase space density at i AU (at a given particle energy) and by

averaging over a large number of individual estimates we obtain a representative

value for the omnidirectional intensity at 1 AU. This method has certain

advantages over a more traditional numerical solution of the transport equation.

Firstly, adiabatic focussing and gradient and curvature drifts are automatic

consequences of full trajectory integration and we therefore avoid the

unphysically large velocities that can result from first order approximations.

Secondly, current sheets and other discontinuities are also dealt with

automatically without the need for continuity conditions. The primary advantage

is that it can deal with three-dimensional field configurations, although that

is of little advantage here, as our model has azimuthal symmetry. The method

has been compared with traditional solutions of the transport equations in

simple spiral fields and complete agreement is obtained. Further details of

this method are given in Thomas and Gall (1983).

Figure 3 displays the cosmic ray intensities obtained as a function of

particle energy for simple Parkerian fields and for the closed field line model

outlined above. The same diffusion coefficients were used for both

calculations. The calculated intensities are subject to errors due to the

finite number of individual estimates of the phase space density. A typical

error bar is displayed. The difference in the two curves is indeed comparable

to the observed variation in cosmic ray intensity over the solar cycle.

DISCUSSION AND CONCLUSION

The mechanism by which the sun reverses polarity is crucial for

understanding the solar cycle modulation of galactic cosmic rays. One possible

mechanism we suggest is that the sun may completely shed the magnetic flux from

the previous cycle and develop a new magnetic field of the opposite polarity.

If this is the case then a closed field line topology will exist in the

heliosphere for the periods near solar maximum. We have quantitatively

investigated the effect of an extremely simple closed field model, representing

the heliospheric field shortly after solar maximum, and find the effect on

cosmic ray intensities to be comparable to that observed.
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We have performed our analysis at just one particular time in the solar
cycle shortly after the field reversal has been completed. It is clear,
however, that the effect will begin substantially earlier (when the reversal
process begins and new flux loops begin to appear in the inner heliosphere) and
will not disappear until all of the old flux has been shed and has convected to
the heliopause. Thus, the intensity reduction can be expected to persist for
several years. It will also display the familiar hysteresis effect.

Our primary objective in this paper is to give a general indication of the
effect that closed field configurations may have on cosmic ray intensities in
the heliosphere, using reasonable estimates for the particle diffusion
coefficient and overall size scale of the interplanetary magnetic field. In
reality the field configuration at this time may be very complicated, but if
regions of closed field do exist then there may be large effects on cosmic ray
intensities which cannot be ignored.
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