19,582 research outputs found

    The numerical solution of the Helmholtz equation for wave propagation problems in underwater acoustics

    Get PDF
    The Helmholtz Equation (-delta-K(2)n(2))u=0 with a variable index of refraction, n, and a suitable radiation condition at infinity serves as a model for a wide variety of wave propagation problems. A numerical algorithm was developed and a computer code implemented that can effectively solve this equation in the intermediate frequency range. The equation is discretized using the finite element method, thus allowing for the modeling of complicated geometrices (including interfaces) and complicated boundary conditions. A global radiation boundary condition is imposed at the far field boundary that is exact for an arbitrary number of propagating modes. The resulting large, non-selfadjoint system of linear equations with indefinite symmetric part is solved using the preconditioned conjugate gradient method applied to the normal equations. A new preconditioner is developed based on the multigrid method. This preconditioner is vectorizable and is extremely effective over a wide range of frequencies provided the number of grid levels is reduced for large frequencies. A heuristic argument is given that indicates the superior convergence properties of this preconditioner

    On accuracy conditions for the numerical computation of waves

    Get PDF
    The Helmholtz equation (Delta + K(2)n(2))u = f with a variable index of refraction n, and a suitable radiation condition at infinity serves as a model for a wide variety of wave propagation problems. Such problems can be solved numerically by first truncating the given unbounded domain and imposing a suitable outgoing radiation condition on an artificial boundary and then solving the resulting problem on the bounded domain by direct discretization (for example, using a finite element method). In practical applications, the mesh size h and the wave number K, are not independent but are constrained by the accuracy of the desired computation. It will be shown that the number of points per wavelength, measured by (Kh)(-1), is not sufficient to determine the accuracy of a given discretization. For example, the quantity K(3)h(2) is shown to determine the accuracy in the L(2) norm for a second-order discretization method applied to several propagation models

    Electric Deflection of Rotating Molecules

    Full text link
    We provide a theory of the deflection of polar and non-polar rotating molecules by inhomogeneous static electric field. Rainbow-like features in the angular distribution of the scattered molecules are analyzed in detail. Furthermore, we demonstrate that one may efficiently control the deflection process with the help of short and strong femtosecond laser pulses. In particular the deflection process may by turned-off by a proper excitation, and the angular dispersion of the deflected molecules can be substantially reduced. We study the problem both classically and quantum mechanically, taking into account the effects of strong deflecting field on the molecular rotations. In both treatments we arrive at the same conclusions. The suggested control scheme paves the way for many applications involving molecular focusing, guiding, and trapping by inhomogeneous fields

    Significant g-factor values of a two-electron ground state in quantum dots with spin-orbit coupling

    Full text link
    The magnetization of semiconductor quantum dots in the presence of spin-orbit coupling and interactions is investigated numerically. When the dot is occupied by two electrons we find that a level crossing between the two lowest many-body eigenstates may occur as a function of the spin-orbit coupling strength. This level crossing is accompanied by a non-vanishing magnetization of the ground-state. Using first order perturbation theory as well as exact numerical diagonalization of small clusters we show that the tendency of interactions to cause Stoner-like instability is enhanced by the SO coupling. The resulting g-factor can have a significant value, and thus may influence g-factor measurements. Finally we propose an experimental method by which the predicted phenomenon can be observed.Comment: 7+ pages, 7 figure

    Maternal age, development time, position effect variegation in Drosophila melanogaster

    Get PDF
    In Drosophila expression of position-effect variegation is enhanced by culturing flies at low temperatures. It is demonstrated that this effect may not be solely temperature dependent. Maternal age influences offspring development times. Futhermore, at a given temperature, the longer a fly takes to develop, the more likely is it to exhibit position-effect variegation.Chez la Drosophile, l’expression de la diversité de « l’effet position est favorisée lorsque les mouches se développent sous des températures basses. Il a été démontré que cet effet n’est pas uniquement dépendant de la température. L’âge maternel influence la durée de développement des descendants. De plus, pour une température donnée, il semble que plus la durée de développement est longue, plus l’expression de « l’effet position » est diversifiée

    Contraction of broken symmetries via Kac-Moody formalism

    Full text link
    I investigate contractions via Kac-Moody formalism. In particular, I show how the symmetry algebra of the standard 2-D Kepler system, which was identified by Daboul and Slodowy as an infinite-dimensional Kac-Moody loop algebra, and was denoted by H2{\mathbb H}_2 , gets reduced by the symmetry breaking term, defined by the Hamiltonian H(β)=12m(p12+p22)αrβr1/2cos((ϕγ)/2). H(\beta)= \frac 1 {2m} (p_1^2+p_2^2)- \frac \alpha r - \beta r^{-1/2} \cos ((\phi-\gamma)/2). For this H(β)H (\beta) I define two symmetry loop algebras Li(β),i=1,2{\mathfrak L}_{i}(\beta), i=1,2, by choosing the `basic generators' differently. These Li(β){\mathfrak L}_{i}(\beta) can be mapped isomorphically onto subalgebras of H2{\mathbb H}_2 , of codimension 2 or 3, revealing the reduction of symmetry. Both factor algebras Li(β)/Ii(E,β){\mathfrak L}_i(\beta)/I_i(E,\beta), relative to the corresponding energy-dependent ideals Ii(E,β)I_i(E,\beta), are isomorphic to so(3){\mathfrak so}(3) and so(2,1){\mathfrak so}(2,1) for E0E0, respectively, just as for the pure Kepler case. However, they yield two different non-standard contractions as E0E \to 0, namely to the Heisenberg-Weyl algebra h3=w1{\mathfrak h}_3={\mathfrak w}_1 or to an abelian Lie algebra, instead of the Euclidean algebra e(2){\mathfrak e}(2) for the pure Kepler case. The above example suggests a general procedure for defining generalized contractions, and also illustrates the {\em `deformation contraction hysteresis'}, where contraction which involve two contraction parameters can yield different contracted algebras, if the limits are carried out in different order.Comment: 21 pages, 1 figur

    Galactic Spiral Structure

    Full text link
    We describe the structure and composition of six major stellar streams in a population of 20 574 local stars in the New Hipparcos Reduction with known radial velocities. We find that, once fast moving stars are excluded, almost all stars belong to one of these streams. The results of our investigation have lead us to re-examine the hydrogen maps of the Milky Way, from which we identify the possibility of a symmetric two-armed spiral with half the conventionally accepted pitch angle. We describe a model of spiral arm motions which matches the observed velocities and composition of the six major streams, as well as the observed velocities of the Hyades and Praesepe clusters at the extreme of the Hyades stream. We model stellar orbits as perturbed ellipses aligned at a focus in coordinates rotating at the rate of precession of apocentre. Stars join a spiral arm just before apocentre, follow the arm for more than half an orbit, and leave the arm soon after pericentre. Spiral pattern speed equals the mean rate of precession of apocentre. Spiral arms are shown to be stable configurations of stellar orbits, up to the formation of a bar and/or ring. Pitch angle is directly related to the distribution of orbital eccentricities in a given spiral galaxy. We show how spiral galaxies can evolve to form bars and rings. We show that orbits of gas clouds are stable only in bisymmetric spirals. We conclude that spiral galaxies evolve toward grand design two-armed spirals. We infer from the velocity distributions that the Milky Way evolved into this form about 9 Gyrs ago.Comment: Published in Proc Roy Soc A. A high resolution version of this file can be downloaded from http://papers.rqgravity.net/SpiralStructure.pdf. A simplified account with animations begins at http://rqgravity.net/SpiralStructur

    Feedback Effects, Asymmetric Trading, and the Limits to Arbitrage

    Get PDF
    We analyze strategic speculators' incentives to trade on information in a model where firm value is endogenous to trading, due to feedback from the financial market to corporate decisions. Trading reveals private information to managers and improves their real decisions, enhancing fundamental value. This feedback effect has an asymmetric effect on trading behavior: it increases (reduces) the profitability of buying (selling) on good (bad)news. This gives rise to an endogenous limit to arbitrage, whereby investors may refrain from trading on negative information. Thus, bad news is incorporated more slowly into prices than good news, potentially leading to overinvestment
    corecore