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ABSTRACT

The Helmholtz Equation

(-A-K2n2)u = 0

with a variable index of refraction, n, and a suitable radiation condition at

infinity serves as a model for a wide variety of wave propagation problems. A

numerical algorithm has been developed and a computer code implemented that

can effectively solve this equation in the intermediate frequency range. The

equation is discretized using the finite element method, thus allowing for the

modeling of complicated geometries (including interfaces) and complicated

boundary conditions. A global radiation boundary condition is imposed at the

far field boundary that is exact for an arbitrary number of propagating modes.

The resulting large, non-selfadjoint system of linear equations with

indefinite symmetric part is solved using the preconditioned conjugate

gradient method applied to the normal equations. A new precondltloner is

developed based on the mu!tlgrld method. This preconditioner is vectorlzable

and is extremely effective over a wide range of frequencies provided the

number of grid levels is reduced for large frequencies. A heuristic argument

is given that indicates the superior convergence properties of this

precondltioner. The relevant limit to analyze convergence is for K

increasing and a fixed prescribed accuracy level. The efficiency and
robustness of the numerical algorithm is confirmed for large acoustic models,

including interfaces with strong velocity contrasts.
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Introduction

In this paper, we describe a numerical method for approximately solving

the Helmholtz equation

Au + K2nZ(x,y)u = 0. (1.1)

Equation (I.I) with a suitable radiation condition at infinity describes both

the propagation and scattering of time harmonic waves in general geometries.

We will restrict the application of (i.I) to problems that occur in underwater

acoustics. Therefore u will represent the acoustic pressure, n(x,y) the

2wf where f is the
index of refraction, and K is the wave number (=-_n '

frequency and co is a reference sound speed). The region of interest will

be a duct or wavegulde containing inhomogeneltles and interfaces. The

numerical method is based on combining a finite element dlscretizatlon with a

recently developed iterative method for solving the resulting system of linear

equations [I]. We observe that thls numerical method is also applicable to

three-dlmensional problems as well as vector formulations of (I.I) such as

those describlngelastic wave propagation [2].

Various computational techniques have been applied to simplified

propagation models, including parabolic equation and normal mode type methods,

asymptotic methods, and others. For a survey of various models and

computational methods, see [3]. Although each of these techniques is

effective under suitable assumptions, there are many important problems for

which it is necessary to treat the complete wave propagation model in the low

to intermediate frequency range. Such models can include full angle

propagation and backscatterlng. Thls can occur, for example, when the ocean
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bottom must be taken into account or a layer of ice is present on the ocean

surface.

There are several difficulties associated with the numerical solution of

the full acoustic propagation model (I.i). The solution must often be

resolved over many wavelengths, leading to very large systems of linear

equations. Recent results have shown that as the frequency increases (or

equivalently as the size of the model increases), the number of

polnts/wavelength must be increased [4]. Thus the number of equations

increases faster than quadratically in K. A finite element method has

recently been developed that dramatically reduces the number of equations in

regions where little backscattering is present [5]. The resulting matrices

will be indefinite and also nonself-adjolnt due to the radiation boundary

condition. Furthermore, effective radiation boundary conditions to be imposed

at a finite boundary must be developed. Various alternative approaches for

dealing with these difficulties are discussed in [5].

We have developed a numerical algorithm and implemented a computer code

that can effectively solve (i.I). The equation is dlscretized using the

finite element method, thus allowing considerable flexibility in modeling

complex geometries. The resulting linear system of equations is solved

iteratively using the preconditioned conjugate gradient method applied to the

normal equations [i]. This method requires relatively little storage (i.e.,

storage does not have to be allocated for the bandwidth) and is well suited

and efficient for large problems. A global radiation boundary condition is

imposed at the far field boundary. This boundary condltion is based on a

modal expansion of the far field solution that is exact for an arbitrary

number of propagating modes (see [6] and [7]).
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The effectiveness of the iteratlve method depends on the choice of the

precondltloner. We consider precondltloners based on a splitting of the

discrete Laplaclan. In previous papers, [I] and [8], we investigated

precondltloners based on SS0R and ADI. In this paper we describe a

precondltloner based on a version of the multlgrld method (introduced in [16])

which we have found to be extremely effective over a wide range of

frequencies, provided the number of grid levels is decreased as the frequency

increases. We shall see that this preconditioning is considerably more

efficient than the SSOR and ADI precondltloners employed in [I] and [8]. This

preconditioning has the additional advantage of being vectorlzable since a

relaxation scheme based on a red-black ordering [9] is used.

We close this section by outlining the remainder of the paper. In Section

2 we describe a wave propagation model including an interface with a

discontinuity in both the sound speed and density. We also describe the

global radiation boundary condition, a finite element method for solving this

boundary value problem, and an efficient implementation of the global boundary

condition condition with the finite element method. In Section 3 we describe

the iteratlve solution method and mltlgrld precondltloner. We also describe

a new way of analyzing convergence of the iteratlve method, based on an

accuracy condition developed in [4] relating the frequency and mesh size.

Numerical results will be presented in Section 4 demonstrating the efficiency

of the numerical method. We summarize our conclusions in Section 5.
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Continuous and Discrete Model

We shall describe our numerical method with respect to the following model

problem. Consider (I.I) in a bounded portion• of a two-dlmenslonal semi-

infinite rectangular waveguide. Hence our computational domain, D, is given

by D = {(x,y): 0 _ x _ x , 0 < y < u}. We assume that there is an interface

r dividing D into two subregions, D1 and D2. Furthermore, suppose that the

density p is piecewise constant with P = Pl and DI and P = P2 in D2.

Our propagation model is now given by the following boundary value problem:

(-A -.K2n2(x,y))u(x,y) = 0 in D (2.1a)

au(x,O) _ 0 (2.1b)
ay

u(x,_)--0 (2.1c)

au(0,y) ffig(y) (2.1d)ax

au(r
'_J = T(u) (2.1e)

ax

Ul(X,y) = u2(x,y) , for (x,y) on r (2.1f)

and

-I aul(x,Y) -I au2(x,Y)
for (x,y) on r, (2.ig)PI an = P2 an

The boundary operator T in (2.1e) is chosen to model the outflow of energy

and will be discussed in detail below. In (2.1f) and (2.1g), ui denotes the
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restriction of the pressure u to Di, i=1,2, and 8ul/_n denotes the normal

derivative on F pointing into D2.

Remark 2.1. The Dirichlet boundary condition (2.1c) is a pressure release

condition valid on the ocean surface. Condition (2.1b) models a rigid bottom,

although a more general impedance condition could be implemented without

difficulty. The forcing term in (2.1d) could readily be imposed as a

Dirichlet condition instead of a Neumann condition. Furthermore, we could

just as easily consider other coordinates systems (e.g., cylindrical

coordinates) instead of Cartesian coordinates. Finally, note that the method

can be applied to problems with nonrectangular boundaries (see [6]). Based on

our previous experience with complicated geometries [8i, we do not anticipate

a serious degradation in the numerical results.

We next define the radiation boundary operator T appearing in (2.1e).

Consider the seml-inflnite rectangular wavegulde

= {(x,y): 0 < x < _, 0 _ y < _}. Assuming that n(x,y) - 1 for x ) x ,

it is easily seen that the outgoing solution of (2.1) can be expressed as

e£jX
U(X,y) = _. aj /_ cos _jy for x ) x., where _j = j +1/2 andj=l

i/K2 - 02 for K > _j
£.

_- /_2 - K2 for K < ,.3

Thus the far field solution is composed of a finite number of progagatlng

modes (£j imaginary) and an infinite number of evanescent modes (£j real)

that decay exponentially as x . _. Set fj(y) = {_7_ cos ajy and note that
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-£jx -Z.x

aj = e < u,fj>l, - e J _ _ u(x ,y)fj(y)dy, j=l,2,...,0

where

r - _.._(x,y):x = x , 0 _ y _ _}

We may now define our global boudnary operator, as in [6] and [7], by

M

T(u) = _ <U,fm> r £mfm(y), (2.2)
m=l

where M is chosen large enough to account for all propagating modes and

those evanescent modes which are not small enough to be neglected at x = x .

Remark 2.2: When only very few propagating modes are important, a simpler

local boundary operator can be efficiently implemented [17, 18]. For example,
£ x

if only the mth mode, e m f (y), is propagating for x )x , the globalm

operator T\ defined by (2.2) could be replaced by the impedance boundary

operator given by

-axa i_m)U. (2.2"1
B(U) -- ("_'__-

However, as the number of significant modes increases, the order of the local

boundary operator increases.

We next discretize the continuous model, (2.1) using the finite element

method. We first observe, using integration by parts, that the solution u

of (2.1) satisfies the following variational problem:

a(u,v) --_o2<g,v>F0 - -P2 0f g(0,y)v_-_ dy for all v in HE (2.3)
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(assuming F0C DI), where F0 _ {(x,y): x = 0, 0 _ y < _} and HE is the

space of continuous complex-valued functions defined by

2

HE- {v: [ ] (Iv12+ IVvl2)dxdy<- and v(x,_)= 0}.
j=l D.

3

The bilinear form a(v,w) is defined by

a(v,w) E P2 f (Vv-V_- K2n2v_)dxdy

D1

+ plIf (Vv.V_- K2n2v_)dxdy - _ T(v)_dy) (2.4)

D2 r®

for all v,w in HE.

To dlscretlze problem (2.3) we introduce a family of finite dimensional

subspaces shcH E such that Sh becomes dense in HE as h + 0. The

approximate solution, uh in Sh, of (2.1) or (2.3) is defined by

a(uh,v h) = -p2<g,vh>r0 for all vh in Sh. (2.5)

h
It can generally be proved that u . u as h + 0. For a comprehensive

treatment of the finite element method, see [I0] or [Ii].

Remark 2.3: It is frequently convenient to replace the equations obtained

from (2.5) by another system, where all terms that are multiplied by K2 are

lumped in the diagonal of the matrix. For a discussion of mass lumping, see

[12]. All numerical results in Section 4 were obtained using a lumped mass

matrix.
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Typically, the finite element spaces Sh consist of sufficiently smooth

plecewlse polynomials of some fixed degree defined on a partitioning of D

into simple subsets with diameter of order 0(h). We have implemented and

tested a finite element algorithm based on continuous plecewlse linear

functions defined on right triangles. Introducing a basis, {_j}, for the

finite element space Sh (with dimension N = N(h)) in the usual way ([I0],

[Ii]), the approximate solution uh in Sh may be expressed as

N

uh(x,y) = _ qj_j(x,y), (2.6)
j=l

where qj = uh(pj). Substituting (2.6) into (2.5) with vh given by

_j, J=I,.--,N, we obtain the following system of equations for the unknown

column vector _ = (ql,''',qN)T:

AR= g, (2.7)

where _ = (gl,-..,gN)T with gj = -p2<g,_j>r0, j=t,...,N, and the matrix

A is given by

A = (aij), \aij = a((i,(j), i,j = I,.-.,N. (2.8)

\

We close this section by describing a method for efficiently implementing

the global boundary operator T (consisting of M modes). We start with

equations (2.7) and let Ny denote the number of grid points in the y

direction. Note that the iterative solution method to be described in Section

3 merely requires matrix multiplications of the form A_ with
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x = (Xl,'",XN)T~ , so that the matrix A need not be stored. It follows

readily using an appropriate ordering for the vertices and (2.2), (2.4), and

(2.8) that for each matrix multiplication A_ we must evaluate

N

Yi = j=l_y <T(_J)'_i>r- xj, i = l,...,Ny. (2.9)

Equation (2.9)describes a full Ny x Ny matrix with elements

Hij = <T(_j),_i>r . If H were an arbitrary full matrix, the work involved

in computing A_ would be significantly larger than with the local boundary

conditions, thus degrading the efficiency of the method. However, it is

apparent from (2.2) that the continuous boundary operator T(u) is of rank

M and this is also true for the finite element approximation. Therefore

= • )T(Ul, "',uN can be computed in 0(MNy) operations.
Y

In order to see this, assume for simplicity that M = I. If we introduce

= .. )T defined by ei <_i,fl>r , then it canthe column vector _ (el,. ,eN =
y

be readily seen that

• = (2.10)

where _ = (Zl,...,ZN)T is a vector ranging over the boundary points. If
Y

there are M modes in the boundary operator, then H_ is a sum of M terms

of the form (2.10)
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3. Solutlon_ethod

As seen in Section 2, a discretlzatlon of (2.1) leads to a system of

equations

Ax= b, (3.1)

where A is typically quite large. Due to the properties of A already

described, standard iterative methods are not applicable to the solution of

(3.1), [13]. We have developed an Iteratlve method for the solution of (3.1),

[I], based on the preconditioned normal equations:

A"* A"x" = A"*b", (3.2)

where A" = Q;IAQ_I, _" = QI_, b" = Q_I_, and A'* denotes the adjolnt of

A'. The preconditioning matrix M-I = Q?I Q_I was chosen in [I] and [8] to

be an easily computed partial inverse of A0, the positive definite matrix

obtained by setting K = 0 in A. The conjugate gradient method is then

applied to the system (3.2) and is guaranteed to converge since the normal

equations are positive definite symmetric. We refer to [I] for a detailed

description of the conjugate gradient algorithm. The method requires only a

small number of vector multiplications and additions, and it is only necessary

to evaluate M-I, A, and A* acting on a vector. Hence no matrices need be

inverted or stored and the method is efficient provided M-I sufficiently

reduces the number of iterations. In [I] and [8] we showed this to be the

case when M-I was chosen to be one or more sweeps of point SSOR or ADI

applied to the discrete Laplaclan, A0.
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Convergence of an iterative method is usually defined by letting the mesh

size h + 0 (hence the number of equations N + _) and keeping all other

parameters fixed ([13] and [14]). However, in order to maintain accuracy as

the wave number K increases it is necessary to reduce h. Hence K and h

must be contrained by means of an accuracy condition, [4]. In [4] we showed,

e.g., that K3+=h 2 must be kept constant for continuous piecewlse linear

finite elements, where in general = ) 0 but in many cases _ = 0. This

implies that the number of points/wavelength must be increased as K

increases. This is also the case as the domain size is increased.

In view of the above, a more relevant definition of convergence is

obtained by prescribing a fixed accuracy (e.g., K3h 2 fixed) and letting K

increase. This has an important bearing on the choice of preconditioner. In

particular, preconditioners based on fast Laplace solvers are superior with

respect to the standard definition of convergence but will have a very

unfavorable growth rate as K increases. To illustrate this, we consider the

following model problem on the unit square with Dirichlet boundary conditions

16
-Au - K2_1 +--_)u = 0. (3.3)

d
The dissipative term i_K models the addition of a term, 6 _ , to the wave

equation and is included to model the radiation condition.

We will study the convergence rate of the algorithm by analyzing the

condition number K of the matrix A'*A'. It is well known ([14i) that in

general the convergence rate of the conjugate gradient method applied to (3.2)

is inversely proportional to A _ K I/2. Let A be the matrix corresponding

to the standard flve-point discretization of (3.3) (multiplied by h2).
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Suppose that the preconditioningmatrix M-I is positivedefinite symmetric

and commuteswlth A. If Q1 = Q2 = MI/2 then A is glven by I Ima----_xI,' Xmin

where Imax is the largestelgenvalueof A" (in magnitude)and Imin is the

smallestelgenvalueof A" (in magnitude). We easily see that the elgenvalues

of A are given by

Caha - K2h2CI + _I,

where 0 < = ( 2 and C is a constant.

We now consider K and h related by K3h 2 = _ with K + _, h + 0. The

elgenvalues are given by

K-(3/2)_ _ i_
C - _I +-_). (3.4)

The cases _ = 0 and e = 2 give eigenvalues that are 0(I) and 0(K-I).

If we precondition by a complete inverse of the discrete Laplacian, then the

elgenvalues become

C - cK(3/2)a-l(l +_). (3.5)

The cases e = 0 and _ = 2 give elgenvalues that are 0(I) and 0(K2). By

examining the case e = 2/3 we see that the real part of (3.4) and (3.5) can

vanish. Therefore in (3.4) we can have eigenvalues which are 0(K-2) and A

can be as large as 0(K2). Similarly, in (3.5) we can have elgenvalues which

are 0(K-I) and A can be as large as 0(K3), thus giving a very slow

convergence rate for large K.
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In the remainder of this section we construct a preconditioner based on a

multigrid method, see [16], (applied to the discrete Laplacian, AO) that is

much more efficient than the preconditioners considered in [I] and [8]. We

begin by briefly describing a nmltigrid cycle. Consider a sequence of grids

G0,-..,G M, with the mesh size hi on grid Gi given by

hi = 2-ih0,i=0,''.,M, where hM = h and h0 is independent of h. (Hence

the number of levels increases as h + 0). We obtain a sequence of equations

Aix i = bi, i=l,''',M,

in the same way as (3.1) by discretizing (2.1) as in Section 2 with mesh

size hi replacing h. We choose some relaxation scheme for each grid level,

as well as some interpolation operator I_ from grid Gi to grid _.

To begin the cycle, we make r relaxation sweeps on the finest grid

level, GM, and then transfer the residual

RM-I M-1 RM M-I. M

to grid GM-I. On this grid, we obtain the equation

AM-I vM-1 = RM-I.
,%,

This process is repeated until we get to the coarsest grid GO . On this grid

we make £ relaxation sweeps. To return to the finer grid, we again make £

1
relaxation sweeps on GO. We then calculate _ by
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l I I 0
u =u +10v •new old ~

We continue this process, using s relaxation sweeps on each successive grid

up to the finest grid. The number of relaxation sweeps r,s and £ will be

discussed in the next section. The entire process defines one complete

multfgrid cycle. (See [15] for a more detailed description of the multigrid

method and [16] for more details on the implementation of multlgrid as a

precondltfoner).

Since we are using the multfgrid cycle as a preconditioning, we want the

cycle to be positive definite and symmetric. Assuming a zero initial guess,

this requires that all operations in the direction of finer grids are the

adjoint finer grids are the adjofnt of the operations in the direction of

coarsers grids. An efficient relaxation scheme for the Laplace equation is

Gauss-Seldel with red black (RB) ordering, [9]. This also makes the algorithm

vectorizable. In view of symmetry considerations, we see that if RB is used

when going to coarser grids, then BR must be used when returning to finer

grids. Furthermore, we maintain symmetry by using linear interpolation for

I__ I and a full weighting for the fine to coarse residual transfer I_-I,

[15].

It can be shown that a multigrfd cycle reduces the error by a fixed

amount, independent of h, and only requires 0(N) operations. Hence a fixed

number of multfgrid cycles applied to the Laplacfan acts as a fast Laplace

solver. In view of our earlier remark concerning fast Laplace solvers, we

expect that a multlgrid cycle will be effective as a preconditfoner for

small K but the number of iterations will grow rapidly as K increases

subject to the accuracy constraint. These conclusions are confirmed
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numerically in [16] in connection with a symmetric Helmholtz operator (i.e., a

Neumann boundary condition replaces the radiation boundary condition).

In order to obtain a slower growth in the number of iterations as K

increases, we introduce the following idea. Consider the model problem (3.3)

and suppose that a preconditioner is used which acts as an inverse of the

discrete Laplacian (multiplied by h2) on those eigenvectors corresponding to

a limited part of its spectrum, say those eigenvalues of the form 0(h a) with

0 _ a J a0. Furthermore, assume that the remaining eigenvectors are

essentially unchanged by the preconditioner, then the eigenvalues of A" are

given by

3

Ca - _K 2 a 1 i_(I + _---) for 0 ! a!aO,

3 a (3.6)

Ca K 2 _ i6I + _--) for a0 ! a _ 2

2

It can be seen that if a0 = _ , then A is only 0(K).

If we now neglect the effects of the residual transfers and coarse to fine

interpolations in the nmltigrid preconditioner and assume that the relaxation

eliminates the highest frequencies of the error on each grid, then we can

treat multi-grid as a preconditioner of the previous form with eigenvalues of

the preconditioned matrix given by (3.6). For simplicity assume that

h = 2-L on the finest grid. Hence we choose the coarsest grid, Gj, to be
2

such that the highest frequencies on this grid are 0(h3). This gives

h. = 2-j = 2 3_. (3.7)
3
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The numerical examples will demonstrate that for N = 128 three levels are

optimal. This is vary close to the value predicted by (3.7). Either

increasing or decreasing the number of levels results in a striking increase

in the number of iterations. Furthermore, for N = 200 a simple modification

of the above argument predicts that a coarsest grid of either 25 or 50 points

should be optimal. In fact, we find that a coarsest grid of 50 points is

optimal. Thus, although the above argument is only heuristic, it does

correctly predict nearly optimal coarsest grids.

4. Numerical Results

In this section we present typical numerical results obtained using the

multigrid precondltioner described in the preceding section. All results were

obtained for the problem described in Section 2. The results were obtained on

a square of length _ using plecewlse linear elements on right triangles.

There are N grid intervals in each direction, so that the number of

equations is (N+I) 2. In all cases, the mass matrix is lumped.

The numerical examples are designed to illustrate the convergence

properties of the algorithm when K increases and K and h are constrained

by the accuracy requirement, K3h 2 fixed. As was indicated in Section 3, for

large K the precondltioner will be most effective when only a small number

of levels are used in the multigrid algorithm. The results demonstrate the

sensitivity of the precondltioner to the number of levels. In addition, the

numerical results illustrate the effect of boundary conditions on convergence

properties of the algorithm and the robustness of the method as interfaces

with strong constrast (causing large backscattering) are introduced. In

examples i-4, we assume no interface present and n(x,y) _ 1 in (2.1).
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We define convergence of the iteratlve method to mean that the normalized

mean square norm of M-Ir is less than 10-6 , where r is the residual.

This quantity is naturally produced by the implementation of the

preconditioned conjugate gradient algorithm. We have verified that monitoring

the norm of r instead of M-Ir causes only slight changes in the number of

iterations. Note that our stopping criteria is more stringent than might be

required in practice, where the level of the truncation error is used to stop

the iteration process.

In example I we consider (2.1) with the Neumann data (2.1d) chosen so that

the exact solution is

The radiation boundary condition is the local condition, (2.2_), which is

exact for this mode. Based on the argument of Section 3, we use only three

grid levels. In addition we use two relaxation sweeps on the coarsest grid

and one sweep on the other grids. In Table I, the number of iterations

required for convergence is shown for different values of K and N. The

last three entries in Table 1 show the number of iterations required for three

frequencies for which K3h 2 = .5 (corresponding to a normalized mean square

error of about 7%). The first entry corresponds to a cas_ solved using SSOR

as a preconditioner, which required 284 iterations for convergence, [I]. The

same problem required 290 iterations to converge using ADI as a precondltloner

(see [8]). It is apparent that on this simple problem, the multlgrld

precondltloner is more effective than SSOR and ADI. Furthermore, the growth

in the number of iterations is slow as K increases with K3h 2 fixed.
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In example 2, we consider the Neumann data as a source modeled by the

w

derivative of a Gausslan centered at y = _ . The radiation boundary

condition is now given by (2.2) with the sum extendingover all propagating

modes and the first four evanescentmodes. Results are given for different

values of K with K3h2 fixed at 1.01 and .425, By examining model

solutions for these parameters,we believe that the first case correspndsto

roughly 10% accuracy and the second case corresponds to approximately 5%

accuracy. The results in Table 2 correspondto three levelsin the multlgrld

algorithm,with two relaxation sweeps on the coarsest grid and one sweep on

the other grids. It is seen that the number of iterations grows close to

linearly with K for K3h2 fixed. We also observe that for a fixed grid

size, the number of iterations appears to grow at a rate of 0(K2). This

shows that the evaluationof the effectivenessof a precondltlonerfor large

K depends crucially on the relationshipbetween K and h. In Table 3,

results are given using four levels in the multlgrldprecondltlonerand four

relaxation sweeps on the coarsest grid. It is apparent that the convergence

is considerableworse in this case. For the last two entries in Table 3,

seven levels were used and the degradation of the convergence is quite

striking.

Due to space limitations, detailed comparisons of the multlgrld

precondltloner with SSOR and other precondltloners will be presented

elsewhere. We simply state that SSOR for the case of K = 20 and N = 281

did not convergein 2200 iterations. Furthermore,for K3h2 fixed the number

of iterationsrequiredfor convergenceis increasingat a rate greaterthan
3

0(K2). An operation count (countingadditions and multiplicationsequally)
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indicates that each iteration with multlgrid as a precondltioner requires

about twice the work of an iteration using SSOR as a preconditloner. The

0(K) growth in the number of iterations as K increases makes the multlgrld

precondltloner significantly more efficient for large models.

In the remaining examples we use the same multlgrld precondltioner as in

example i. In examples 3 and 4 we consider the effect of the radiation

boundary condition on the number of iterations required for convergence. In

example 3 the Neumann data (2.1d) is chosen so that the solution is (4.1),

while in example 4 the Neumann data is the derivative of a Gausslan.j In both

examples K = 16 and N = 201. The radiation boundary condition is either

the local boundary condition (2.2") or the global boundary condition (2.2)

accounting for one, five, ten and twenty modes. The results are presented in

Tables 4 and 5. In example 4 there are 16 propagating modes, so the only

boundary condition that accounts for all of the modes is the last one. In

example 3, however, there is only one mode in the solution and all of these

boundary conditions are non-reflectlng on that mode.

The results in Table 4 indicate that the radiation boundary condition has

a very small effect on the number of iterations required for convergence when

one mode is present in the solution. In the case of the derivative of a

Gausslan, however, the global boundary conditions that allow for reflections

require considerably more iterations than the boundary condition that accounts

for all propagating modes. It can be shown that if the global boundary

condition (2.2) does not account for all of the propagating modes, the

boundary value problem (2.1) can be singular or have elgenvalues very close to

zero. This can degrade the conditioning of the matrix. A comparison of

Tables 4 and 5 also indicates that the number of iterations increases as the
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number of propagatingmodes increaseseven if the radiationboundarycondition

is accuratefor all of these modes.

In examples5 and 6 we considerthe effect of a rectangularinterfacewith

a plecewise constantindex of refraction. In both cases the Neumann data is

given by the derivativeof Gaussian. In example5, we consideran interface

w w

with _!x !T and 0 !Y _ where the index of refraction,n, may be a

constant other than I. In example 6 the size of the region is extended,so

3_
that _! x !_'- and 0 ! Y !_" In these examples n varies from 1 to .25,

and in one case is 1.25. These constrasts would cause considerable

backscattering, so that the parabolic equation method is expected to be

inaccurate for these problems. The number of iterations required for

convergence is shown in Tables 6 and 7 for these examples. The results

indicate that the preconditioneris robust and can handle strong constrasts

extendingover relativelylarge regions.

5. Conclusions

We have describeda general method to solve Helmholtz type equationsfor

an intermediate range of frequencies. The iterative method is based on

obtaining an effective preconditioner which enables the solution to be

obtained in a relativelysmall number of iterations. The relevant limit to

analyze the convergencepropertiesof a preconditioneris for K increasing

and a fixed prescribed accuracy level. In this regime, the number of

iterations increase at a rate greater than 0(K2) when using a complete

multigrid cycle or other methods based on fast solvers as a preconditloner.

This is vary unsatisfactoryfor large frequencies. For SSOR, the number of
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3

iterations increase at a rate greater than 0(K2), which is also unfavorable

for large K.

The use of _,ltlgrld as a precondltloner with a restricted number of

levels gives a rate of increase of 0(K), thus resulting in a significantly

more effective algorithm, this is demonstrated by both a heuristic argument

and by numerical results. Using this method we have been able to solve two-

dimensional problems with up to I0 wavelengths in each directions and with

more than 78,000 unknowns in a reasonable number of iterations. For example,

with a sound speed of 5000 ft./see, and a frequency of 10Hz, this corresponds

to a square of length 5000 ft. On an IBM 3033 computer with double preclson

arithmetic, the large model (i.e., k = 20 and 281 x 281 unknowns) required

four hours of computer time while the smaller model (k = 16 and 201 × 201

unknowns) required 98 minutes of computer time. The computational effort is

significantly reduced using the truncation error instead of 10-6 as a

stopping criterion for the iteratlve method. Furthermore, both the storage

requirements and computation time are greatly reduced if we approximate the

magnitude of the pressure instead of the pressure. This is sufficient for

many applications. Problems with strong velocity contrast do not appear to

significantly degrade the performance of the numerical algorithm. Thus this

method may be suitable for efficient computation of the full acoustic model in

cases where one-way propagation models and other approximate models would be

inaccurate.
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TABLE I: Results for Example I.

K N K3h2 Iterations

4.16 61 .197 24

5.92 65 .5 37

7.76 97 .5 43

9.4 129 .5 46

TABLE 2: Results for Example 2.

K N K3h 2 Iterations

11.88 129 1.01 640

16 201 1.01 863

20 281 1.01 1059

8.9 129 .425 292

12 201 .425 472

15 281 .425 674
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TABLE 3: Results for Example 2 using 4 levels and 4 relaxation

sweeps on the coarsest grid.

K N K3h 2 Iterations

11.88 129 1.01 2511

16 201 1.01 >3900

20 281 1.01 >2000

8.9 129 .425 956

12 201 .425 1492

15 281 .425 1918

11.88" 129 1.01 3969

8.9* 129 .425 1516

*7 Levels and 2 Relaxation Sweeps on the Coarsest Grid.

TABLE 4: Results for Example 3 (One Mode in Solution).

Boundary Condition Modes in BC Iterations

Local m 81

Global 1 77

Global 5 80

Global I0 81

Global 20 81
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TABLE5: ResultsforExample4 (PointSource).

Boundary Condition Modes in BC Iterations

Local -- 805

Global 1 1401

Global 5 1411

Global 10 1226

Global 20 863

TABLE 6: Results for Example 5.

Index of
K N Refraction Iterations

16 201 1 863

16 201 0.5 856

16 201 0.33 798
.

16 201 0.25 841
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TABLE7: Resultsfor Example6

Index of
K N Refraction Iterations

16 201 1 863

16 201 0.5 943

16 201 0.33 1108

16 201 0.25 788

16 201 1.25 1082

20 281 1 1059

20 281 0.33 1269
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