19,872 research outputs found
The Effect of Vincristine Sulphate on the Axoplasmic Flow of Proteins in Cultured Sympathetic Neurons
The effect of vincristine sulphate on the axoplasmic flow of labelled proteins in neurites of chick embryo sympathetic neurons growing in tissue culture was studied by autoradiography. In control neurons most of the 3H-proteins synthesized during a 90-min pulse with a 3H-amino acid were localized in cell bodies. There was a diminishing gradient of labelled proteins in the neurites which was highest in portions adjacent to the cell bodies and lowest at the periphery. During a physiological chase there was a gradual increase in the amount of label in the neurites, so that after a 15-h chase even the most peripheral portions were well labelled. This indicates that a portion of the labelled proteins synthesized in the cell bodies are transported peripherally into the neurites.
The centrifugal movement of labelled proteins in neurites was markedly decreased when cells were grown in medium containing 10 ”g/ml vincristine sulphate. After a 15-h chase in the presence of drug only a small amount of label was in the peripheral portion of the neurites. Treatment with vincristine did not decrease the rate of amino acid incorporation or alter the rate of protein turnover during the course of the experiment. Thus an explanation of the results based on an altered rate of total cell protein synthesis or degradation is unlikely.
The capacity of sympathetic neurons to take up and concentrate exogenous [3H]norepinephrine in their neurites was only slightly reduced by vincristine. This indicates that at least some cellular activities requiring metabolic energy are relatively unaffected by the interruption in axoplasmic flow caused by vincristine and that the mechanism by which vincristine interferes with axoplasmic flow does not involve general cellular toxicity.
The major morphological differences between control and vincristine-treated neurons were the absence of microtubules and the presence of crystal-like structures within the cells. The relationship between the effect of vincristine on the axoplasmic flow of proteins and the arrangement of the microtubule system is discussed
Deflection of Rotating Symmetric Molecules by Inhomogeneous Fields
We consider deflection of rotating symmetric molecules by inhomogeneous
optical and static electric fields, compare results with the case of linear
molecules, and find new singularities in the distribution of the scattering
angle. Scattering of the prolate/oblate molecules is analyzed in detail, and it
is shown that the process can be efficiently controlled by means of short and
strong femtosecond laser pulses. In particular, the angular dispersion of the
deflected molecules may be dramatically reduced by laser-induced molecular
pre-alignment. We first study the problem by using a simple classical model,
and then find similar results by means of more sophisticated methods, including
the formalism of adiabatic invariants and direct numerical simulation of the
Euler-Lagrange equations of motion. The suggested control scheme opens new ways
for many applications involving molecular focusing, guiding, and trapping by
optical and static fields
Electric Deflection of Rotating Molecules
We provide a theory of the deflection of polar and non-polar rotating
molecules by inhomogeneous static electric field. Rainbow-like features in the
angular distribution of the scattered molecules are analyzed in detail.
Furthermore, we demonstrate that one may efficiently control the deflection
process with the help of short and strong femtosecond laser pulses. In
particular the deflection process may by turned-off by a proper excitation, and
the angular dispersion of the deflected molecules can be substantially reduced.
We study the problem both classically and quantum mechanically, taking into
account the effects of strong deflecting field on the molecular rotations. In
both treatments we arrive at the same conclusions. The suggested control scheme
paves the way for many applications involving molecular focusing, guiding, and
trapping by inhomogeneous fields
Geophysical Methods: an Overview
Geophysics is expected to have a major role in lunar resource assessment when manned systems return to the Moon. Geophysical measurements made from a lunar rover will contribute to a number of key studies: estimating regolith thickness, detection of possible large-diameter lava tubes within maria basalts, detection of possible subsurface ice in polar regions, detection of conductive minerals that formed directly from a melt (orthomagmatic sulfides of Cu, Ni, Co), and mapping lunar geology beneath the regolith. The techniques that can be used are dictated both by objectives and by our abilities to adapt current technology to lunar conditions. Instrument size, weight, power requirements, and freedom from orientation errors are factors we have considered. Among the geophysical methods we believe to be appropriate for a lunar resource assessment are magnetics, including gradiometry, time-domain magnetic induction, ground-penetrating radar, seismic reflection, and gravimetry
AlGaAs heterojunction lasers
The characterization of 8300 A lasers was broadened, especially in the area of beam quality. Modulation rates up to 2 Gbit/sec at output powers of 20 mW were observed, waveform fidelity was fully adequate for low BER data transmission, and wavefront measurements showed that phase aberrations were less than lamda/50. Also, individually addressable arrays of up to ten contiguous diode lasers were fabricated and tested. Each laser operates at powers up to 30 mW CW in single spatial mode. Shifting the operating wavelength of the basic CSP laser from 8300 A to 8650 A was accomplished by the addition of Si to the active region. Output power has reached 100 mW single mode, with excellent far field wave front properties. Operating life is currently approx. 1000 hrs at 35 mW CW. In addition, laser reliability, for operation at both 8300 A and 8650 A, has profited significantly from several developments in the processing procedures
Are All Particles Identical?
We consider the possibility that all particles in the world are fundamentally
identical, i.e., belong to the same species. Different masses, charges, spins,
flavors, or colors then merely correspond to different quantum states of the
same particle, just as spin-up and spin-down do. The implications of this
viewpoint can be best appreciated within Bohmian mechanics, a precise
formulation of quantum mechanics with particle trajectories. The implementation
of this viewpoint in such a theory leads to trajectories different from those
of the usual formulation, and thus to a version of Bohmian mechanics that is
inequivalent to, though arguably empirically indistinguishable from, the usual
one. The mathematical core of this viewpoint is however rather independent of
the detailed dynamical scheme Bohmian mechanics provides, and it amounts to the
assertion that the configuration space for N particles, even N
``distinguishable particles,'' is the set of all N-point subsets of physical
3-space.Comment: 12 pages LaTeX, no figure
Central potentials on spaces of constant curvature: The Kepler problem on the two-dimensional sphere and the hyperbolic plane
The Kepler problem is a dynamical system that is well defined not only on the
Euclidean plane but also on the sphere and on the Hyperbolic plane. First, the
theory of central potentials on spaces of constant curvature is studied. All
the mathematical expressions are presented using the curvature \k as a
parameter, in such a way that they reduce to the appropriate property for the
system on the sphere , or on the hyperbolic plane , when
particularized for \k>0, or \k<0, respectively; in addition, the Euclidean
case arises as the particular case \k=0. In the second part we study the main
properties of the Kepler problem on spaces with curvature, we solve the
equations and we obtain the explicit expressions of the orbits by using two
different methods: first by direct integration and second by obtaining the
\k-dependent version of the Binet's equation. The final part of the article,
that has a more geometric character, is devoted to the study of the theory of
conics on spaces of constant curvature.Comment: 37 pages, 7 figure
Bell-Type Quantum Field Theories
In [Phys. Rep. 137, 49 (1986)] John S. Bell proposed how to associate
particle trajectories with a lattice quantum field theory, yielding what can be
regarded as a |Psi|^2-distributed Markov process on the appropriate
configuration space. A similar process can be defined in the continuum, for
more or less any regularized quantum field theory; such processes we call
Bell-type quantum field theories. We describe methods for explicitly
constructing these processes. These concern, in addition to the definition of
the Markov processes, the efficient calculation of jump rates, how to obtain
the process from the processes corresponding to the free and interaction
Hamiltonian alone, and how to obtain the free process from the free Hamiltonian
or, alternatively, from the one-particle process by a construction analogous to
"second quantization." As an example, we consider the process for a second
quantized Dirac field in an external electromagnetic field.Comment: 53 pages LaTeX, no figure
Nonclassical correlations of phase noise and photon number in quantum nondemolition measurements
The continuous transition from a low resolution quantum nondemolition
measurement of light field intensity to a precise measurement of photon number
is described using a generalized measurement postulate. In the intermediate
regime, quantization appears as a weak modulation of measurement probability.
In this regime, the measurement result is strongly correlated with the amount
of phase decoherence introduced by the measurement interaction. In particular,
the accidental observation of half integer photon numbers preserves phase
coherence in the light field, while the accidental observation of quantized
values increases decoherence. The quantum mechanical nature of this correlation
is discussed and the implications for the general interpretation of
quantization are considered.Comment: 16 pages, 5 figures, final version to be published in Phys. Rev. A,
Clarifications of the nature of the measurement result and the noise added in
section I
- âŠ