5,420 research outputs found

    Hitchhiker-G: A new carrier system for attached shuttle payloads

    Get PDF
    A new carrier system has been developed for economical and quick response flight of small attached payloads on the space shuttle. Hitchhiker-G can accommodate up to 750 lb. of customer payloads in canisters or mounted to an exposed plate. The carrier connects to the orbiter's electrical systems and provides up to six customers with standard electrical services including power, real time telemetry, and commands. A transparent data and command system concept is employed to allow the customer to easily use his own ground support equipment and personnel to control his payload during integration and flight operations. The first Hitchhiker-G was successfully flown in January 1986 on STS 61C

    The Impact of CSI and Power Allocation on Relay Channel Capacity and Cooperation Strategies

    Full text link
    Capacity gains from transmitter and receiver cooperation are compared in a relay network where the cooperating nodes are close together. Under quasi-static phase fading, when all nodes have equal average transmit power along with full channel state information (CSI), it is shown that transmitter cooperation outperforms receiver cooperation, whereas the opposite is true when power is optimally allocated among the cooperating nodes but only CSI at the receiver (CSIR) is available. When the nodes have equal power with CSIR only, cooperative schemes are shown to offer no capacity improvement over non-cooperation under the same network power constraint. When the system is under optimal power allocation with full CSI, the decode-and-forward transmitter cooperation rate is close to its cut-set capacity upper bound, and outperforms compress-and-forward receiver cooperation. Under fast Rayleigh fading in the high SNR regime, similar conclusions follow. Cooperative systems provide resilience to fading in channel magnitudes; however, capacity becomes more sensitive to power allocation, and the cooperating nodes need to be closer together for the decode-and-forward scheme to be capacity-achieving. Moreover, to realize capacity improvement, full CSI is necessary in transmitter cooperation, while in receiver cooperation optimal power allocation is essential.Comment: Accepted for publication in IEEE Transactions on Wireless Communication

    Distortion Minimization in Gaussian Layered Broadcast Coding with Successive Refinement

    Full text link
    A transmitter without channel state information (CSI) wishes to send a delay-limited Gaussian source over a slowly fading channel. The source is coded in superimposed layers, with each layer successively refining the description in the previous one. The receiver decodes the layers that are supported by the channel realization and reconstructs the source up to a distortion. The expected distortion is minimized by optimally allocating the transmit power among the source layers. For two source layers, the allocation is optimal when power is first assigned to the higher layer up to a power ceiling that depends only on the channel fading distribution; all remaining power, if any, is allocated to the lower layer. For convex distortion cost functions with convex constraints, the minimization is formulated as a convex optimization problem. In the limit of a continuum of infinite layers, the minimum expected distortion is given by the solution to a set of linear differential equations in terms of the density of the fading distribution. As the bandwidth ratio b (channel uses per source symbol) tends to zero, the power distribution that minimizes expected distortion converges to the one that maximizes expected capacity. While expected distortion can be improved by acquiring CSI at the transmitter (CSIT) or by increasing diversity from the realization of independent fading paths, at high SNR the performance benefit from diversity exceeds that from CSIT, especially when b is large.Comment: Accepted for publication in IEEE Transactions on Information Theor

    Minimum Expected Distortion in Gaussian Layered Broadcast Coding with Successive Refinement

    Full text link
    A transmitter without channel state information (CSI) wishes to send a delay-limited Gaussian source over a slowly fading channel. The source is coded in superimposed layers, with each layer successively refining the description in the previous one. The receiver decodes the layers that are supported by the channel realization and reconstructs the source up to a distortion. In the limit of a continuum of infinite layers, the optimal power distribution that minimizes the expected distortion is given by the solution to a set of linear differential equations in terms of the density of the fading distribution. In the optimal power distribution, as SNR increases, the allocation over the higher layers remains unchanged; rather the extra power is allocated towards the lower layers. On the other hand, as the bandwidth ratio b (channel uses per source symbol) tends to zero, the power distribution that minimizes expected distortion converges to the power distribution that maximizes expected capacity. While expected distortion can be improved by acquiring CSI at the transmitter (CSIT) or by increasing diversity from the realization of independent fading paths, at high SNR the performance benefit from diversity exceeds that from CSIT, especially when b is large.Comment: To appear in the proceedings of the 2007 IEEE International Symposium on Information Theory, Nice, France, June 24-29, 200

    DNA-decorated graphene chemical sensors

    Full text link
    Graphene is a true two dimensional material with exceptional electronic properties and enormous potential for practical applications. Graphene's promise as a chemical sensor material has been noted but there has been relatively little work on practical chemical sensing using graphene, and in particular how chemical functionalization may be used to sensitize graphene to chemical vapors. Here we show one route towards improving the ability of graphene to work as a chemical sensor by using single stranded DNA as a sensitizing agent. The resulting broad response devices show fast response times, complete and rapid recovery to baseline at room temperature, and discrimination between several similar vapor analytes.Comment: 7 pages, To appear in Applied Physics Letter

    Lessons Learned from Development of a Software Tool to Support Academic Advising

    Full text link
    We detail some lessons learned while designing and testing a decision-theoretic advising support tool for undergraduates at a large state university. Between 2009 and 2011 we conducted two surveys of over 500 students in multiple majors and colleges. These surveys asked students detailed questions about their preferences concerning course selection, advising, and career paths. We present data from this study which may be helpful for faculty and staff who advise undergraduate students. We find that advising support software tools can augment the student-advisor relationship, particularly in terms of course planning, but cannot and should not replace in-person advising.Comment: 5 Figures, revised version including more figures and cross-referencin

    A Herschel [C II] Galactic plane survey II: CO-dark H2 in clouds

    Full text link
    ABRIDGED: Context: HI and CO large scale surveys of the Milky Way trace the diffuse atomic clouds and the dense shielded regions of molecular hydrogen clouds. However, until recently, we have not had spectrally resolved C+ surveys to characterize the photon dominated interstellar medium, including, the H2 gas without C, the CO-dark H2, in a large sample of clouds. Aims: To use a sparse Galactic plane survey of the 1.9 THz [C II] spectral line from the Herschel Open Time Key Programme, Galactic Observations of Terahertz C+ (GOT C+), to characterize the H2 gas without CO in a statistically significant sample of clouds. Methods: We identify individual clouds in the inner Galaxy by fitting [CII] and CO isotopologue spectra along each line of sight. We combine these with HI spectra, along with excitation models and cloud models of C+, to determine the column densities and fractional mass of CO-dark H2 clouds. Results: We identify 1804 narrow velocity [CII] interstellar cloud components in different categories. About 840 are diffuse molecular clouds with no CO, 510 are transition clouds containing [CII] and 12CO, but no 13CO, and the remainder are dense molecular clouds containing 13CO emission. The CO-dark H2 clouds are concentrated between Galactic radii 3.5 to 7.5 kpc and the column density of the CO-dark H2 layer varies significantly from cloud-to-cloud with an average 9X10^(20) cm-2. These clouds contain a significant fraction of CO-dark H2 mass, varying from ~75% for diffuse molecular clouds to ~20% for dense molecular clouds. Conclusions: We find a significant fraction of the warm molecular ISM gas is invisible in HI and CO, but is detected in [CII]. The fraction of CO-dark H2 is greatest in the diffuse clouds and decreases with increasing total column density, and is lowest in the massive clouds.Comment: 21 pages, 19 figures, accepted for publication in A&A (2014
    • …
    corecore