ABRIDGED: Context: HI and CO large scale surveys of the Milky Way trace the
diffuse atomic clouds and the dense shielded regions of molecular hydrogen
clouds. However, until recently, we have not had spectrally resolved C+ surveys
to characterize the photon dominated interstellar medium, including, the H2 gas
without C, the CO-dark H2, in a large sample of clouds. Aims: To use a sparse
Galactic plane survey of the 1.9 THz [C II] spectral line from the Herschel
Open Time Key Programme, Galactic Observations of Terahertz C+ (GOT C+), to
characterize the H2 gas without CO in a statistically significant sample of
clouds. Methods: We identify individual clouds in the inner Galaxy by fitting
[CII] and CO isotopologue spectra along each line of sight. We combine these
with HI spectra, along with excitation models and cloud models of C+, to
determine the column densities and fractional mass of CO-dark H2 clouds.
Results: We identify 1804 narrow velocity [CII] interstellar cloud components
in different categories. About 840 are diffuse molecular clouds with no CO, 510
are transition clouds containing [CII] and 12CO, but no 13CO, and the remainder
are dense molecular clouds containing 13CO emission. The CO-dark H2 clouds are
concentrated between Galactic radii 3.5 to 7.5 kpc and the column density of
the CO-dark H2 layer varies significantly from cloud-to-cloud with an average
9X10^(20) cm-2. These clouds contain a significant fraction of CO-dark H2 mass,
varying from ~75% for diffuse molecular clouds to ~20% for dense molecular
clouds. Conclusions: We find a significant fraction of the warm molecular ISM
gas is invisible in HI and CO, but is detected in [CII]. The fraction of
CO-dark H2 is greatest in the diffuse clouds and decreases with increasing
total column density, and is lowest in the massive clouds.Comment: 21 pages, 19 figures, accepted for publication in A&A (2014