710 research outputs found

    Table Detection in Invoice Documents by Graph Neural Networks

    Get PDF
    This is the author accepted manuscript. The final version is available from IEEE via the DOI in this record.Tabular structures in documents offer a complementary dimension to the raw textual data, representing logical or quantitative relationships among pieces of information. In digital mail room applications, where a large amount of administrative documents must be processed with reasonable accuracy, the detection and interpretation of tables is crucial. Table recognition has gained interest in document image analysis, in particular in unconstrained formats (absence of rule lines, unknown information of rows and columns). In this work, we propose a graph-based approach for detecting tables in document images. Instead of using the raw content (recognized text), we make use of the location, context and content type, thus it is purely a structure perception approach, not dependent on the language and the quality of the text reading. Our framework makes use of Graph Neural Networks (GNNs) in order to describe the local repetitive structural information of tables in invoice documents. Our proposed model has been experimentally validated in two invoice datasets and achieved encouraging results. Additionally, due to the scarcity of benchmark datasets for this task, we have contributed to the community a novel dataset derived from the RVL-CDIP invoice data. It will be publicly released to facilitate future research.European Unio

    High prevalence of scrapie in a dairy goat herd: tissue distribution of disease-associated PrP and effect of PRNP genotype and age

    Get PDF
    Following a severe outbreak of clinical scrapie in 2006–2007, a large dairy goat herd was culled and 200 animals were selected for post-mortem examinations in order to ascertain the prevalence of infection, the effect of age, breed and PRNP genotype on the susceptibility to scrapie, the tissue distribution of diseaseassociated PrP (PrPd^{\rm d}), and the comparative efficiency of different diagnostic methods. As determined by immunohistochemical (IHC) examinations with Bar224 PrP antibody, the prevalence of preclinical infection was very high (72/200; 36.0%), with most infected animals being positive for PrPd^{\rm d} in lymphoreticular system (LRS) tissues (68/72; 94.4%) compared to those that were positive in brain samples (38/72; 52.8%). The retropharyngeal lymph node and the palatine tonsil showed the highest frequency of PrPd^{\rm d} accumulation (87.3% and 84.5%, respectively), while the recto-anal mucosa-associated lymphoid tissue (RAMALT) was positive in only 30 (41.7%) of the infected goats. However, the efficiency of rectal and palatine tonsil biopsies taken shortly before necropsy was similar. The probability of brain and RAMALT being positive directly correlated with the spread of PrPd^{\rm d} within the LRS. The prevalence of infection was influenced by PRNP genetics at codon 142 and by the age of the goats: methionine carriers older than 60 months showed a much lower prevalence of infection (12/78; 15.4%) than those younger than 60 months (20/42; 47.6%); these last showed prevalence values similar to isoleucine homozygotes of any age (40/80; 50.0%). Two of seven goats with definite signs of scrapie were negative for PrPd^{\rm d} in brain but positive in LRS tissues, and one goat showed biochemical and IHC features of PrPd^{\rm d} different from all other infected goats. The results of this study have implications for surveillance and control policies for scrapie in goats

    The HOPE fixation technique - a promising alternative to common prostate cancer biobanking approaches

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The availability of well-annotated prostate tissue samples through biobanks is key for research. Whereas fresh-frozen tissue is well suited for a broad spectrum of molecular analyses, its storage and handling is complex and cost-intensive. Formalin-fixed paraffin-embedded specimens (FFPE) are easy to handle and economic to store, but their applicability for molecular methods is restricted. The recently introduced Hepes-glutamic acid-buffer mediated Organic solvent Protection Effect (HOPE) is a promising alternative, which might have the potential to unite the benefits of FFPE and fresh-frozen specimen. Aim of the study was to compare HOPE-fixed, FFPE and fresh-frozen bio-specimens for their accessibility for diagnostic and research purposes.</p> <p>Methods</p> <p>10 prostate cancer samples were each preserved with HOPE, formalin, and liquid nitrogen and studied with in-situ and molecular methods. Samples were H&E stained, and assessed by immunohistochemistry (i.e. PSA, GOLPH2, p63) and FISH (i.e. <it>ERG </it>rearrangement). We assessed DNA integrity by PCR, using control genes ranging from 100 to 600 bp amplicon size. RNA integrity was assessed through qRT-PCR on three housekeeping genes (TBP, GAPDH, β-actin). Protein expression was analysed by performing western blot analysis using GOLPH2 and PSA antibodies.</p> <p>Results</p> <p>Of the HOPE samples, morphologic quality of H&E sections, immunohistochemical staining, and the FISH assay was at least equal to FFPE tissue, and significantly better than the fresh-frozen specimens. DNA, RNA, and protein analysis of HOPE samples provided similar results as compared to fresh-frozen specimens. As expected, FFPE-samples were inferior for most of the molecular analyses.</p> <p>Conclusions</p> <p>This is the first study, comparatively assessing the suitability of these fixation methods for diagnostic and research utilization. Overall, HOPE-fixed bio-specimens combine the benefits of FFPE- and fresh-frozen samples. Results of this study have the potential to expand on contemporary prostate tissue biobanking approaches and can serve as a model for other organs and tumors.</p

    Wigner Crystalline Edges in nu < 1 Quantum Dots

    Full text link
    We investigate the edge reconstruction phenomenon believed to occur in quantum dots in the quantum Hall regime when the filling fraction is nu < 1. Our approach involves the examination of large dots (< 40 electrons) using a partial diagonalization technique in which the occupancies of the deep interior orbitals are frozen. To interpret the results of this calculation, we evaluate the overlap between the diagonalized ground state and a set of trial wavefunctions which we call projected necklace (PN) states. A PN state is simply the angular momentum projection of a maximum density droplet surrounded by a ring of localized electrons. Our calculations reveal that PN states have up to 99% overlap with the diagonalized ground states, and are lower in energy than the states identified in Chamon and Wen's study of the edge reconstruction.Comment: 8 pages, 8 figures, to be published in Phys. Rev.

    Review of Person Re-identification Techniques

    Full text link
    Person re-identification across different surveillance cameras with disjoint fields of view has become one of the most interesting and challenging subjects in the area of intelligent video surveillance. Although several methods have been developed and proposed, certain limitations and unresolved issues remain. In all of the existing re-identification approaches, feature vectors are extracted from segmented still images or video frames. Different similarity or dissimilarity measures have been applied to these vectors. Some methods have used simple constant metrics, whereas others have utilised models to obtain optimised metrics. Some have created models based on local colour or texture information, and others have built models based on the gait of people. In general, the main objective of all these approaches is to achieve a higher-accuracy rate and lowercomputational costs. This study summarises several developments in recent literature and discusses the various available methods used in person re-identification. Specifically, their advantages and disadvantages are mentioned and compared.Comment: Published 201

    High Magnetic Field Microwave Conductivity of 2D Electrons in an Array of Antidots

    Full text link
    We measure the high magnetic field (BB) microwave conductivity, Reσxx\sigma_{xx}, of a high mobility 2D electron system containing an antidot array. Reσxx\sigma_{xx} vs frequency (ff) increases strongly in the regime of the fractional quantum Hall effect series, with Landau filling 1/3<ν<2/31/3<\nu<2/3. At microwave ff, Reσxx\sigma_{xx} vs BB exhibits a broad peak centered around ν=1/2\nu=1/2. On the peak, the 10 GHz Reσxx\sigma_{xx} can exceed its dc-limit value by a factor of 5. This enhanced microwave conductivity is unobservable for temperature T0.5T \gtrsim 0.5 K, and grows more pronounced as TT is decreased. The effect may be due to excitations supported by the antidot edges, but different from the well-known edge magnetoplasmons.Comment: 4 pages, 3 figures, revtex

    Interferon-γ-producing immature myeloid cells confer protection against severe invasive group A Streptococcus infections

    Get PDF
    Cytokine-activated neutrophils are known to be essential for protection against group A Streptococcus infections. However, during severe invasive group A Streptococcus infections that are accompanied by neutropenia, it remains unclear which factors are protective against such infections, and which cell population is the source of them. Here we show that mice infected with severe invasive group A Streptococcus isolates, but not with non-invasive group A Streptococcus isolates, exhibit high concentrations of plasma interferon-γ during the early stage of infection. Interferon-γ is necessary to protect mice, and is produced by a novel population of granulocyte–macrophage colony-stimulating factor-dependent immature myeloid cells with ring-shaped nuclei. These interferon-γ-producing immature myeloid cells express monocyte and granulocyte markers, and also produce nitric oxide. The adoptive transfer of interferon-γ-producing immature myeloid cells ameliorates infection in wild-type and interferon-γ-deficient mice. Our results indicate that interferon-γ-producing immature myeloid cells have a protective role during the early stage of severe invasive group A Streptococcus infections

    Role of synovial fibroblast subsets across synovial pathotypes in rheumatoid arthritis: a deconvolution analysis

    Get PDF
    OBJECTIVES: To integrate published single-cell RNA sequencing (scRNA-seq) data and assess the contribution of synovial fibroblast (SF) subsets to synovial pathotypes and respective clinical characteristics in treatment-naïve early arthritis. METHODS: In this in silico study, we integrated scRNA-seq data from published studies with additional unpublished in-house data. Standard Seurat, Harmony and Liger workflow was performed for integration and differential gene expression analysis. We estimated single cell type proportions in bulk RNA-seq data (deconvolution) from synovial tissue from 87 treatment-naïve early arthritis patients in the Pathobiology of Early Arthritis Cohort using MuSiC. SF proportions across synovial pathotypes (fibroid, lymphoid and myeloid) and relationship of disease activity measurements across different synovial pathotypes were assessed. RESULTS: We identified four SF clusters with respective marker genes: PRG4(+) SF (CD55, MMP3, PRG4, THY1(neg)); CXCL12(+) SF (CXCL12, CCL2, ADAMTS1, THY1(low)); POSTN(+) SF (POSTN, collagen genes, THY1); CXCL14(+) SF (CXCL14, C3, CD34, ASPN, THY1) that correspond to lining (PRG4(+) SF) and sublining (CXCL12(+) SF, POSTN(+) + and CXCL14(+) SF) SF subsets. CXCL12(+) SF and POSTN(+) + were most prominent in the fibroid while PRG4(+) SF appeared highest in the myeloid pathotype. Corresponding, lining assessed by histology (assessed by Krenn-Score) was thicker in the myeloid, but also in the lymphoid pathotype + the fibroid pathotype. PRG4(+) SF correlated positively with disease severity parameters in the fibroid, POSTN(+) SF in the lymphoid pathotype whereas CXCL14(+) SF showed negative association with disease severity in all pathotypes. CONCLUSION: This study shows a so far unexplored association between distinct synovial pathologies and SF subtypes defined by scRNA-seq. The knowledge of the diverse interplay of SF with immune cells will advance opportunities for tailored targeted treatments

    Trigonometry of 'complex Hermitian' type homogeneous symmetric spaces

    Full text link
    This paper contains a thorough study of the trigonometry of the homogeneous symmetric spaces in the Cayley-Klein-Dickson family of spaces of 'complex Hermitian' type and rank-one. The complex Hermitian elliptic CP^N and hyperbolic CH^N spaces, their analogues with indefinite Hermitian metric and some non-compact symmetric spaces associated to SL(N+1,R) are the generic members in this family. The method encapsulates trigonometry for this whole family of spaces into a single "basic trigonometric group equation", and has 'universality' and '(self)-duality' as its distinctive traits. All previously known results on the trigonometry of CP^N and CH^N follow as particular cases of our general equations. The physical Quantum Space of States of any quantum system belongs, as the complex Hermitian space member, to this parametrised family; hence its trigonometry appears as a rather particular case of the equations we obtain.Comment: 46 pages, LaTe
    corecore