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ABSTRACT
Objectives  To integrate published single-cell RNA sequencing 
(scRNA-seq) data and assess the contribution of synovial 
fibroblast (SF) subsets to synovial pathotypes and respective 
clinical characteristics in treatment-naïve early arthritis.
Methods  In this in silico study, we integrated scRNA-seq 
data from published studies with additional unpublished 
in-house data. Standard Seurat, Harmony and Liger 
workflow was performed for integration and differential 
gene expression analysis. We estimated single cell type 
proportions in bulk RNA-seq data (deconvolution) from 
synovial tissue from 87 treatment-naïve early arthritis 
patients in the Pathobiology of Early Arthritis Cohort using 
MuSiC. SF proportions across synovial pathotypes (fibroid, 
lymphoid and myeloid) and relationship of disease activity 
measurements across different synovial pathotypes were 
assessed.
Results  We identified four SF clusters with respective 
marker genes: PRG4+ SF (CD55, MMP3, PRG4, THY1neg); 
CXCL12+ SF (CXCL12, CCL2, ADAMTS1, THY1low); POSTN+ 
SF (POSTN, collagen genes, THY1); CXCL14+ SF (CXCL14, 
C3, CD34, ASPN, THY1) that correspond to lining (PRG4+ 
SF) and sublining (CXCL12+ SF, POSTN+  + and CXCL14+ 
SF) SF subsets. CXCL12+ SF and POSTN+  + were most 
prominent in the fibroid while PRG4+ SF appeared highest 
in the myeloid pathotype. Corresponding, lining assessed 
by histology (assessed by Krenn-Score) was thicker in the 
myeloid, but also in the lymphoid pathotype  + the fibroid 
pathotype. PRG4+ SF correlated positively with disease 
severity parameters in the fibroid, POSTN+ SF in the 
lymphoid pathotype whereas CXCL14+ SF showed negative 
association with disease severity in all pathotypes.
Conclusion  This study shows a so far unexplored 
association between distinct synovial pathologies and SF 
subtypes defined by scRNA-seq. The knowledge of the 
diverse interplay of SF with immune cells will advance 
opportunities for tailored targeted treatments.

INTRODUCTION
During the development of rheumatoid 
arthritis (RA), synovial architecture and 
cellular content change dramatically. The thin 

membrane lining the joint synovium becomes 
an inflamed, hyperplastic and invasive tissue 
mass of infiltrating cells—most prominent 
synovial fibroblasts (SF)—that ultimately 
lead to joint destruction.1 In the sublining, 
the presence of infiltrating immune cells, 
expanded SF and increased vascularity are 
characteristic for RA synovium.

Previous research revealed the presence of 
three distinct synovial pathotypes based on 

Key messages

What is already known about this subject?
	► Different studies were able to show the presence of 
diverse synovial fibroblast (SF) subsets in the rheu-
matoid arthritis (RA) synovium using single-cell RNA 
sequencing.

	► In RA, three distinct synovial pathotypes based on 
the presence of immune cells have been identified 
which could be connected with specific clinical pa-
rameters and outcome measures.

What does this study add?
	► We could confirm the presence of specific SF sub-
sets in the synovium and showed the feasibility of 
integration of single-cell RNA sequencing data from 
different resources.

	► By deconvolution of bulk RNAseq, we show differ-
ences in the proportion of SF subtypes within dif-
ferent pathotypes and specific correlations of the 
various SF subtypes with disease activity/severity 
dependent on the histological pathotype.

How might this impact on clinical practice or 
further developments?

	► This so far unexplored connection between the his-
tological pathotype and SF subtypes guides further 
research to understand the impact of the presence 
of immune cells on SF subtypes, and thus opens 
new avenues for targeted treatment according to 
the synovial composition.
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cellular and molecular analysis of synovial tissue:2 (1) 
lymphomyeloid dominated by the presence of B-cells 
in addition to myeloid cells (hereafter lymphoid); (2) 
diffuse-myeloid with myeloid lineage predominance 
but poor in B cells (hereafter myeloid) and (3) pauci-
immune characterised by scanty immune cells and preva-
lent stromal cells (hereafter fibroid). Correlation analysis 
demonstrated that elevation of myeloid-associated and 
lymphoid-associated gene expression strongly correlated 
with disease activity, acute phase reactants and response 
to disease-modifying antirheumatic drugs at six months.3 
Patients with predominant fibroid pathology showed less 
severe disease activity and radiographic progression, but 
poor treatment response.3

New single cell sequencing tools, including single-
cell RNA sequencing (scRNA-seq), provide deep insight 
into tissue biology at the cell-state level, uncovering a 
diversity of synovial lymphoid, myeloid and stromal cell 
populations.4–7

Despite this expanded knowledge and the fact that 
already early studies showed the presence of different 
synovitis subtypes8 and the potential of SF to adapt to the 
inflammatory status in the synovium,9 the relationship 
between SF subsets and the diversity of tissue pathology 
that is, different synovial pathotypes is unknown. There-
fore, we first aimed to confirm specific subsets of SF in 
synovial tissue by integration of published and unpub-
lished scRNA-seq data. We then assessed the contribution 
of the defined SF subsets to synovial pathotypes and clin-
ical characteristics using deconvolution analysis of bulk 
RNA-seq in treatment-naïve early arthritis synovial tissue.

MATERIAL/METHODS
ScRNA-seq of synovial biopsies
The used publicly available datasets are described in 
online supplemental text 1. Following, we report the 
additionally used in-house datasets. Synovial biopsies 
were obtained from one wrist and one metacarpophalan-
geal (MCP) joint of patients with active RA by ultrasound 
guided fine-needle biopsy after obtaining informed 
consent. Both female patients fulfilled the ACR/EULAR 
classification criteria10 for RA and had no concomitant 
therapy during the time of the biopsy. Synovial biopsies 
were washed with phosphate-buffered saline, mechani-
cally minced and enzymatically digested using Liberase 
TL (100 µg/mL; Roche) and DNAse I (100 µg/mL; 
Roche) in RPMI 1640 cell culture medium (Thermo 
Fisher) for 30 min at 37°C. After stopping the digestion 
process with fetal calf serum, erythrocytes were lysed with 
Red Blood Cell Lysis solution (Milteny Biotec). Cells 
were washed and counted on a LUNA automated cell 
counter (Logos Biosystems). A total of 15 000 unsorted 
synovial cells per patient were prepared for single 
cell analysis using the Chromium Single Cell 3’ GEM, 
Library & Gel Bead Kit v3, the Chromium Chip B Single 
Cell Kit (10× Genomics) and the Chromium controller 
(all 10× Genomic). Libraries were sequenced on the 

Illumina NovaSeq instrument to a sequence depth of 
20 000–70 000 reads per cell. CellRanger (V.2.0.2) from 
10× Genomics was used to demultiplex, align the reads 
to Ensembl reference build GRCh38.p13 and collapse 
unique molecular identifiers.

Integration of scRNA-seq datasets
Standard Seurat (V.3.3) for R (V.3.6) protocol—a very 
well established package to analyse scRNA-seq data—was 
used for the integration.11 In a sensitivity analysis, the 
integration step was additionally performed with Liger 
(V.1.0)12 as well as Harmony (V.0.1),13 since these three 
methods have been found to be superior compared with 
other integration protocols.14 If not otherwise stated, 
default settings were used for each integration method. 
Online supplementary text 1 gives further information 
about the integration process.

To identify differentially expressed genes between 
groups of cells, we used the Wilcoxon rank-sum test. We 
used a minimum log2 FC of 0.25 for average expression 
of genes in a cluster relative to the average expression in 
all other clusters combined. To take multiple testing into 
account, p values were adjusted by false discovery rate 
(FDR) controlling. Significant Marker genes (adjusted 
p<0.05) were sorted by average log2 FC. KEGG Pathways 
of the Marker Genes were estimated with clusterProfiler 
R package.

Pseudotime trajectory analysis
Monocle 2 R package (V.2.2) was used to perform pseu-
dotime trajectory analysis.15 Monocle applies advanced 
machine learning methods to find transcriptomic changes 
each cell goes through as part of a dynamic biological 
process. Once the overall ‘trajectory’ of gene expression 
changes has been identified, each cell gets placed at its 
proper position in the trajectory. Furthermore, Monocle 
tracks changes as a function of progress along the trajec-
tory, which is termed ‘pseudotime’'. After ordering of 
cells along the trajectory, genes that change as a func-
tion of pseudotime will be identified. Most significant 
genes with similar trends over pseudotime were grouped 
together with the function ‘plot_pseudotime_heatmap’. 
All tasks were performed with default settings.16

Deconvolution analysis of SF subsets across synovial 
pathotypes
Bulk RNA-seq data from synovial tissue as well as corre-
sponding cellular (immunohistology with pathotype 
grading) and clinical characteristics were available from 
87 treatment-naïve early RA patients (<12 months symp-
toms duration) in the Pathobiology of Early Arthritis 
Cohort (PEAC).17 Information about the PEAC-Cohort 
was previously described.2 3 From the 87 patients, 16 had 
a fibroid, 45 a lymphoid and 20 a myeloid pathotype; in 6 
patients the grading was not possible.

Fastq files were downloaded fromthe European Bioin-
formatics Institute with the accession code E-MTAB-6141 
and were mapped to hg19 and sequence reads assigned 
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to genomic features using STAR18 and featureCounts,19 
respectively.

MuSiC R package was used to perform the decon-
volution analysis.20 MuSiC uses cell-type specific gene 
expression from scRNA-seq data to characterise cell type 
compositions in bulk RNA-seq. A standard protocol was 
used to estimate cell type proportions in bulk tissue.21

Pairwise-Wilcox test was used to calculate pairwise 
comparisons between group levels. SF cluster propor-
tions were analysed for correlation with disease activity 
measures across different synovial pathotypes.

P values were adjusted for multiple testing by FDR 
controlling.

Histological analysis
The pathotype and Krenn lining score22 were assessed in 
a subset of 69 synovial samples from patients with RA as 
previously described.2

RESULTS
Integration of five scRNA-seq datasets
We first collected scRNA-seq data from 31 RA synovial 
tissues of four published studies and of an in-house 
dataset (figure 1 and online supplementary text 1). SFs 
were selected based on the presence of COL1A2 and 
absence of PTPRC (CD45, leucocyte marker) and VWF 
(von Willebrand factor, endothelial cell marker) gene 
expression. Uniform Manifold Approximation and 
Projection for Dimension Reduction (UMAP) visual-
isation showed that the expression of these genes was 
uniformly present in neighbouring clusters apart from 
cluster 7 in the samples from the Center of Experimental 

Rheumatology Zurich (CER). The main marker genes 
of cluster 7 were suggestive of a smooth muscle origin 
(eg, MYH11, ACTA1 and ACTA2) and thus the cluster was 
excluded from further analysis. The studies of Alivernini 
et al7 and Stephenson et al4 had a substantially higher 
number of SF cells compared with the other datasets 
(figure  1). To correct for this imbalance, we randomly 
reduced the number of identified SF of these studies to 
3000 and used the remaining 8693 SF for further analysis.

Generation SF signatures
Integration and clustering of the identified SF cells using 
Seurat, Liger or Harmony identified similar clusters of 
SF illustrated by the expression of marker genes deter-
mined in previous studies: CD55, THY1, CD34, POSTN 
and HLA-DRA (figure 2A). In all three approaches, four 
SF subtypes were distinguishable (figure 2A). The top 20 
marker genes of the Seurat, Liger and Harmony deter-
mined SF clusters are presented in online supplemental 
tables 1-3.

The first subtype (PRG4+ SF) expressed high levels 
of CD55, MMP3, PRG4 and FN1, and was THY1 nega-
tive. This subtype was previously suggested to reside in 
the lining layer of the synovium.4–7 The second subtype 
(CXCL12+ SF) expressed CXCL12, CCL2 and ADAMTS1 
and had the lowest THY1 expression of the three THY1 
positive subtypes. The third subtype (POSTN+ SF) showed 
high expression of POSTN and collagen genes. This 
subtype expressed intermediate levels of THY1. The 
fourth subtype (CXCL14+ SF) expressed high levels of 
CXCL14, C3, ASPN, THY1 and CD34. Liger identified an 
additional fifth subtype. This subtype contained CD55 

Figure 1  Individual synovial tissue datasets with respective used methods and number of synovial fibroblasts (SF), UMAP 
visualisation and SF positive (COL1A2) and negative (PTPRC, vWF) marker genes. Selected SF clusters in unsorted datasets 
are marked in grey in the UMAP plot. CER = Center of Experimental Rheumatology Zurich, UMAP = Uniform Manifold 
Approximation and Projection for Dimension Reduction. UMAP; Uniform Manifold Approximation and Projection for Dimension 
Reduction.
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Figure 2  Identification of synovial fibroblast (SF) subsets (A) different integration methods with UMAP visualisation, grouping 
of cells according to datasets and violinplots showing the gene expression per cluster of CD55, THY1, CD34, POSTN and HLA-
DRA. (B) Heatmap of the 10 most significant marker genes of each SF cluster (via Seurat). (C) Distribution of seurat clusters 
across the different datasets. (D) KEGG pathways enrichment analysis across SF clusters. Top 20 pathways are shown. UMAP; 
Uniform Manifold Approximation and Projection for Dimension Reduction.
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and THY1 negative cells with high expression of HLA-
DRA (figure 2A). The cluster represented a minor popu-
lation of cells, some of which were also scattered across 
the other four subtypes. Therefore, this subtype was not 
considered in the further analysis.

UMAP with colour-coding according to the data source 
confirmed that the four subtypes were derived from 
data across all data sets (figure 2A). However, the distri-
bution of the SF subsets differed between the studies 
(figure 2C). The variation in distribution of the subtypes 
may be due to the differences in material and methods 
used. But even in the two studies with the most similar 
approach (Mizoguchi et al5 and Zhang et al6) the distri-
bution of the subtypes varied and two studies with a very 
different approach (CER and Mizoguchi et al5) showed 
similar patterns of SF subtype distribution. Differences in 
patient selection (disease stage and activity), previous and 
current treatment and joint location might contribute to 
variation in subtype distribution between the studies.

We then performed KEGG pathway analysis across the 
SF subtypes (figure 2D, online supplementary table 4). 
PRG4+ SF genes were enriched for terms such as  +‘focal 
adhesion’, ‘ECM-receptor interaction’ and ‘mineral 
absorption’, which supported the assignment of these 
SF to the synovial lining layer. CXCL12+ SF genes were 
enriched for different pathways associated with proin-
flammatory states (+ ‘RA’, ‘TNF signalling pathway’, 
‘MAPK signalling pathway’). Pathways that were unique 
for POSTN+   + were ‘human papillomavirus infection’ 
(included genes: COL1A1, COL3A1, COL1A2, ACTN1, 
LAMB1) and ‘regulation of actin cytoskeleton’ (included 
genes: ITGA10, MYLK, ACTN1, MYH10, PDGFRB, MYL9, 
ENAH, ITGA11, ITGB5). Most significant pathways 
of CXCL14+   + were ‘phagosome’, ‘gap-junction’ and 
‘arachidonic acid metabolism’.

Assessment of dynamic relationships between SF subtypes
After the investigation of different gene expression 
profiles of the SF clusters, we assessed the relationships 
between the different clusters using monocle 2 (figure 3). 
A continuum over five different cell states was found by 
advanced machine learning technique (figure 3A). When 
overlaid with the SF subtypes, it appeared that the cells 
dispersed along the trajectory beginning in PRG4+  + over 
CXCL12+  + to CXCL14+ SF (figure 3B and C). CXCL12+ SF 
additionally formed two small branches of cell states. The 
state at one side of the trajectory - with mostly containing 
PRG4+ SF – was defined as starting point for further 
analysis. Differential expression analysis over pseudo-
time identified several genes that changed significantly 
during the transition (online supplementary table 5). 
Figure 3D shows the 50 most significant changing genes 
over the pseudotime trajectory in a heatmap. Included in 
these genes are THY1 and PRG4, genes that were previ-
ously described as relevant positional markers of SF in 
the synovium23 in sublining and lining SF, respectively 
(figure 3D and E).

In summary, we successfully integrated five datasets 
with which we could recapitulate previously identified SF 
subtypes as well as the plasticity of these cellular states 
according to their location within the synovium.

Distribution of SF phenotypes across synovial pathotypes
We then integrated and clustered all synovial cells to be 
able to perform the deconvolution analysis of bulk tran-
scriptomics data of synovial tissues (online supplemen-
tary table 6 and supplementary figure 1). Deconvolution 
analysis revealed a distribution of the different cell types 
as the respective pathotypes would suggest (figure 4A). 
The proportion of SF was highest in the fibroid patho-
type, while the lymphoid pathotype showed a clear 
enrichment in myeloid cells, plasma cells, B cells and T 
cells (figure 4A). The myeloid pathotype was denoted by 
high percentage of myeloid cells but absence of T and B 
cells. Overall, these results confirmed the accuracy of our 
approach.

Analysis of SF subtype enrichment within the various 
pathotypes suggested that POSTN+   + and CXCL14+   + 
are most prominent in the fibroid pathotype, while the 
proportion of PRG4+ SF expanded in the myeloid patho-
type (+). Statistical analysis confirmed that PRG4+  + had 
higher proportions in the myeloid pathotype compared 
with the fibroid pathotype (figure 4B). Accordingly, lining 
thickness assessed by histology was more pronounced 
in the myeloid, but also in the lymphoid pathotype 
compared with the fibroid pathotype (online supple-
mentary figure 2). CXCL12+  + and POSTN+  + had the 
highest proportions in the fibroid pathotype, followed by 
the lymphoid pathotype in CXCL12+  + and the myeloid 
pathotype in POSTN+ SF, respectively (+).

In summary, these data suggest an expansion of lining 
PRG4+ SF fibroblasts in the myeloid pathotype and 
increased proportions of CXCL12+ SF and POSTN+  + in 
the fibroid pathotype.

Correlation of SF subtypes with clinical characteristics
To assess the connection of the different subtypes with 
pathological processes and clinical symptoms in RA, we 
correlated demographic and clinical data with the pres-
ence of the SF subtypes (figure 4C,D, online supplemen-
tary table 7). Proportions of SF were neither different 
between men and women nor between seropositive and 
seronegative patients or different age groups. Without 
differentiating the patients according to the synovial 
pathotype, there was a significant negative relationship 
between CXCL14+  + and swollen joint count (R=−0.61, 
adjusted p=value 0.047) as well as Disease Activity Score-28 
(DAS28 (R=−0.64, adjusted p<0.001). Also, within the 
different pathotypes, proportions of CXCL14+   + were 
generally negatively correlated with clinical parame-
ters. Specifically in the myeloid pathotype, CXCL14+ SF 
showed the strongest negative association with DAS28 
(R=−0.98; p=0.0025, adjusted p=0.047).

Even though CXCL12+  + was characterised by inflam-
matory signalling pathways, its presence did not correlate 
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Figure 3  Pseudotime analysis of synovial fibroblast (SF) subsets. (A) Visualisation of the trajectory states of all SF. Top and 
middle right shows the pseudotime trajectory in the reduced dimension and UMAP visualisation. (B) Distribution of the SF 
cluster along the trajectory (right split by cluster). (C) Distribution of SF clusters in the main trajectory states 1, 3 and 5. (D) Most 
significant genes that covary across pseudotime split in two clusters (state one left, state five right). (E) Plot of gene expression 
levels of PRG4 and THY1 in the UMAP of the SF clusters on the left and along the pseudotime trajectory on the right. UMAP = 
Uniform Manifold Approximation and Projection for Dimension Reduction.
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Figure 4  Synovial fibroblasts (SF) across synovial pathotypes and comparison with disease activity measurements. 
(A) Distribution of different cell types between the different synovial pathotypes. (B) Proportion of the different SF subtypes 
within the pathotypes. (C) Correlation between disease activity measurements and SF proportions across synovial pathotypes. 
(D) Dotplot with Pearson correlation of different clinical parameters with SF subtypes across pathotypes. DAS; disease activity 
score. ESR; erythrocyte sedimentation rate. FDR; false discovery rate. HAQ; health assessment questionnaire. SJC; swollen 
joint count. TJC; tender joint count. VAS; visual analog scale.
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with any clinical symptoms. Strikingly for PRG4+  + and 
POSTN+ SF, correlations were opposite in the different 
pathotypes. In the lymphoid pathotype, increasing 
POSTN+ SF proportions were related with higher tender 
and swollen joint counts and CRP levels, but in the fibroid 
and lymphoid pathotype these correlations tended to be 
reversed (figure 4D and online supplementary table 7). 
Similarly for PRG4+ SF, in the fibroid pathotype a positive 
relationship with disease activity (+=0.66, p=0.02, adjusted 
p=0.18) and with the Health Assessment Questionnaire 
(R=0.67, p=0.017, adjusted p=0.18) was seen, but in the 
myeloid pathotype a negative correlation with disease 
activity (R=−0.52; p=0.007, adjusted p=0.11), particularly 
a negative association with the swollen tender joint count 
(R=−0.63; p<0.001; adjusted p=0.023) was measured 
(figure  4D). Together these data point to a substantial 
influence of immune cells on shaping gene expression of 
PRG4+  + and POSTN+  + in arthritic synovium.

We also looked at the relationship of other synovial 
cell types with DAS28 (online supplementary figure 3); 
however, without further division of these additional cell 
types in subtypes, no significant relationship was found.

DISCUSSION
In this study, we were able to integrate synovial single-cell 
data from different sources and protocols and confirmed 
the presence of four distinct SF subpopulations in RA 
synovium.4–7 Furthermore, we could show that the 
different SF subtypes vary in their distribution within 
pathotypes and correlate with distinct clinical disease 
characteristics dependent on the pathotype. Thus, with 
our data, we revealed a presently unexplored connection 
between the SF subtypes and the type of immune cell 
infiltration in RA synovium.

The SF subtypes that we defined with the integrated 
dataset are largely in line with previously identified SF 
subtypes. All the previously published datasets obtained 
a subset of SF with high expression of CD55 and absence 
of THY1 expression. Further analysis—using staining of 
CD55 in the synovium4 and high expression of known 
SF lining genes5—concluded that these cells most likely 
represent lining SF. In the fibroid pathotype, the propor-
tions of PRG4+ SF showed the most positive correlations 
with clinical parameters, leading to the hypothesis that 
in low presence of immune cells the lining PRG4+ SF 
subset might play a stronger role in driving RA symp-
toms as compared with the myeloid pathotype, where 
proportions of PRG4+ SF mostly negatively correlated 
with clinical parameters. It has been postulated that 
lining SF mediate tissue damage and sublining SF coordi-
nate inflammatory responses.24 Serum MMP3—the most 
significant marker gene of PRG4+ SF—has a known associ-
ation with disease activity and joint damage.25 26 However, 
previous studies from the PEAC cohort found that the 
fibroid pathotype was associated with less radiographic 
progression compared with the other pathotypes,2 impli-
cating a role of additional cell types in mediating tissue 

destruction. Notably, PRG4+ SF proportions were higher 
in the myeloid pathotype  + the others. This is in concor-
dance with a previous study showing that lining SFs are 
positively correlated with macrophage density.27 Surpris-
ingly, PRG4+ SF proportions negatively correlated with 
clinical parameters in the myeloid pathotype suggesting 
that the increased presence of macrophages might have 
a regulatory effect on this SF subtype.

CXCL12+ SF subset of integrated data set showed high 
expression of CXCL12 and HLA-DRA and no expression 
of CD34, consistent with an SF subtype described by Aliv-
ernini7 and Zhang6  +, in which the corresponding associ-
ated genes were more highly expressed in leucocyte-rich 
RA than in OA.6

The POSTN+ SF subset was   + by high expression of 
POSTN. Also, Mizoguchi et al5 found high expression of 
POSTN in the CD34-/THY+ subset and an association of 
the respective SF subset with proportion of infiltrated 
leucocytes, histological synovitis, and synovial hyper-
trophy by ultrasound. In accordance, we found a positive 
correlation of this SF subtype with clinical parameters of 
active RA, but only in the lymphoid pathotype suggesting 
that interaction with lymphocytes may influence the 
pathogenic role of this SF subtype.

The CXCL14+ SF subset expressed CD34, as well as 
CXCL14. Based on the expression of inflammatory 
cytokines and higher number of recruited peripheral 
blood monocytes in a transwell   + assay, Mizoguchi et 
al5 suggested that CD34pos SF are mostly responsible 
for monocyte recruitment in inflamed synovial tissue. 
However, the latter analysis was done with cultured SF 
subsets, which might alter their behaviour. Alivernini et al7 
separated a CD34+  + a CXCL14+ SF subsets. The CXCL14+ 
SF in Alivernini et al7 was further characterised by high 
expression of GAS6, regulating the function of synovial 
tissue macrophages in remission (MerTKposCD206pos). 
GAS6 expression in CXCL14+  + was higher in remission 
compared with active RA in Alivernini et al,7 which points 
to a possible anti-inflammatory role of this SF subtype. In 
accordance, in our analysis the presence of the CXCL14+ 
SF subtype consistently negatively correlated with clinical 
symptoms of RA. Thus, CXCL14+ SF might represent a 
regulatory SF subtype attenuating inflammation. Besides 
this assumed influence of immune cells on SF, the other 
way around is possible as well; SF could be the initial 
driver and attract immune cells via different mechanism. 
via different mechanisms.

Using a deconvolution method, we were able to esti-
mate proportions of various cell types within specific 
synovial pathotypes in the PEAC cohort. Most interest-
ingly, the fibroid pathotype was characterised not only by 
a majority of SF but also by a high proportion of mast 
cells, which has not been studied in this context so far.

The limitation of this study includes that deconvolution 
is only a computational model, and further single cell 
analysis within the pathotypes will have to be performed 
to validate our data. Furthermore, functional analyses 
of SF subtypes are needed to investigate the relation 
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between different SF subsets within pathotypes in detail. 
Nonetheless, our study has brought important insights 
for further research in this direction.

In conclusion, our study shows a so far unexplored 
association between the type of immune cell infiltration 
and the formation of SF subtypes. Knowledge of the 
influence of different SF subtypes on joint inflammation 
will enhance our understanding of the pathogenesis of 
RA, open new avenues for tailored targeted treatment 
according to the pathotype and reveal therapeutic targets 
for influencing the activated stroma in RA.
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