21,500 research outputs found

    Design of two-dimensional sharp-edged-throat supersonic nozzle with boundary-layer correction

    Get PDF
    Computer program accounts for effective nozzle geometry changes due to boundary layer displacement thickness. Program input and output are discussed

    Review of Spectroscopic Data for Measurements of Stratospheric Species

    Get PDF
    Results and recommendations from a two day workshop are discussed. A review of the current status of experimental and theoretical spectroscopic data on molecules of stratospheric interest is given along with recommendations for additional research. Methods for disseminating new and existing data are also discussed

    Readout scheme of the fullerene-based quantum computer by a single electron transistor

    Full text link
    The readout of the quantum spin state is a challenge for any spin-based quantum computing implementation. We propose a scheme, based on the achieved technique of single electron transistor (SET), to implement the readout of electronic spin state inside a doped C60C_{60} fullerene by means of the magnetic dipole-dipole coupling and spin filters. In the presence of an external magnetic field, we show how to perform the spin state detection by transforming the information contained in the spin state into the tunneling current. The robustness of our scheme against sources of error is discussed.Comment: RevTex, 1 table and two figures. Latest versio

    Valence Quark Distribution in A=3 Nuclei

    Full text link
    We calculate the quark distribution function for 3He/3H in a relativistic quark model of nuclear structure which adequately reproduces the nucleon approximation, nuclear binding energies, and nuclear sizes for small nuclei. The results show a clear distortion from the quark distribution function for individual nucleons (EMC effect) arising dominantly from a combination of recoil and quark tunneling effects. Antisymmetrization (Pauli) effects are found to be small due to limited spatial overlaps. We compare our predictions with a published parameterization of the nuclear valence quark distributions and find significant agreement.Comment: 18pp., revtex4, 4 fig

    Semi-regular masas of transfinite length

    Full text link
    In 1965 Tauer produced a countably infinite family of semi-regular masas in the hyperfinite II1\mathrm{II}_1 factor, no pair of which are conjugate by an automorphism. This was achieved by iterating the process of passing to the algebra generated by the normalisers and, for each nNn\in\mathbb N, finding masas for which this procedure terminates at the nn-th stage. Such masas are said to have length nn. In this paper we consider a transfinite version of this idea, giving rise to a notion of ordinal valued length. We show that all countable ordinals arise as lengths of semi-regular masas in the hyperfinite II1\mathrm{II}_1 factor. Furthermore, building on work of Jones and Popa, we obtain all possible combinations of regular inclusions of irreducible subfactors in the normalising tower.Comment: 14 page

    Periodically-driven quantum matter: the case of resonant modulations

    Full text link
    Quantum systems can show qualitatively new forms of behavior when they are driven by fast time-periodic modulations. In the limit of large driving frequency, the long-time dynamics of such systems can often be described by a time-independent effective Hamiltonian, which is generally identified through a perturbative treatment. Here, we present a general formalism that describes time-modulated physical systems, in which the driving frequency is large, but resonant with respect to energy spacings inherent to the system at rest. Such a situation is currently exploited in optical-lattice setups, where superlattice (or Wannier-Stark-ladder) potentials are resonantly modulated so as to control the tunneling matrix elements between lattice sites, offering a powerful method to generate artificial fluxes for cold-atom systems. The formalism developed in this work identifies the basic ingredients needed to generate interesting flux patterns and band structures using resonant modulations. Additionally, our approach allows for a simple description of the micro-motion underlying the dynamics; we illustrate its characteristics based on diverse dynamic-lattice configurations. It is shown that the impact of the micro-motion on physical observables strongly depends on the implemented scheme, suggesting that a theoretical description in terms of the effective Hamiltonian alone is generally not sufficient to capture the full time-evolution of the system.Comment: 16 pages, 3 figures; includes a new Section III dedicated to the strong-driving regim

    Characterizing the Hofstadter butterfly's outline with Chern numbers

    Full text link
    In this work, we report original properties inherent to independent particles subjected to a magnetic field by emphasizing the existence of regular structures in the energy spectrum's outline. We show that this fractal curve, the well-known Hofstadter butterfly's outline, is associated to a specific sequence of Chern numbers that correspond to the quantized transverse conductivity. Indeed the topological invariant that characterizes the fundamental energy band depicts successive stairways as the magnetic flux varies. Moreover each stairway is shown to be labeled by another Chern number which measures the charge transported under displacement of the periodic potential. We put forward the universal character of these properties by comparing the results obtained for the square and the honeycomb geometries.Comment: Accepted for publication in J. Phys. B (Jan 2009

    Neutrino masses or new interactions

    Full text link
    Recent proposals to study the mass of the "electron" neutrino at a sensitivity of 0.3 eV can be used to place limits on the right handed and scalar charged currents at a level which improves on the present experimental limits. Indeed the neglect of the possibility of such interactions can lead to the inference of an incorrect value for the mass, as we illustrate.Comment: 12 pages and 3 figures. Contributed to the XX International Symposium on Lepton and Photon Interactions at High Energies, Rome, July 2001, and to the International Europhysics Conference on High Energy Physics, Budapest, July 2001. Preprint numbers added, misprints correcte
    corecore