17,598 research outputs found
Feasibility of multi-satellite occultation /refraction/ measurements for meteorology Final report
Radio refraction and occultation techniques for atmospheric density measurements between multiple satellite
Characterizing the Hofstadter butterfly's outline with Chern numbers
In this work, we report original properties inherent to independent particles
subjected to a magnetic field by emphasizing the existence of regular
structures in the energy spectrum's outline. We show that this fractal curve,
the well-known Hofstadter butterfly's outline, is associated to a specific
sequence of Chern numbers that correspond to the quantized transverse
conductivity. Indeed the topological invariant that characterizes the
fundamental energy band depicts successive stairways as the magnetic flux
varies. Moreover each stairway is shown to be labeled by another Chern number
which measures the charge transported under displacement of the periodic
potential. We put forward the universal character of these properties by
comparing the results obtained for the square and the honeycomb geometries.Comment: Accepted for publication in J. Phys. B (Jan 2009
Stratospheric constituent measurements using UV solar occultation technique
The photochemistry of the stratospheric ozone layer was studied as the result of predictions that trace amounts of pollutants can significantly affect the layer. One of the key species in the determination of the effects of these pollutants is the OH radical. A balloon flight was made to determine whether data on atmospheric OH could be obtained from lower resolution solar spectra obtained from high altitude during sunset
Primary-Filling e/3 Quasiparticle Interferometer
We report experimental realization of a quasiparticle interferometer where
the entire system is in 1/3 primary fractional quantum Hall state. The
interferometer consists of chiral edge channels coupled by quantum-coherent
tunneling in two constrictions, thus enclosing an Aharonov-Bohm area. We
observe magnetic flux and charge periods h/e and e/3, equivalent to creation of
one quasielectron in the island. Quantum theory predicts a 3h/e flux period for
charge e/3, integer statistics particles. Accordingly, the observed periods
demonstrate the anyonic statistics of Laughlin quasiparticles
Electron interferometry in quantum Hall regime: Aharonov-Bohm effect of interacting electrons
An apparent h/fe Aharonov-Bohm flux period, where f is an integer, has been
reported in coherent quantum Hall devices. Such sub-period is not expected for
non-interacting electrons and thus is thought to result from interelectron
Coulomb interaction. Here we report experiments in a Fabry-Perot interferometer
comprised of two wide constrictions enclosing an electron island. By carefully
tuning the constriction front gates, we find a regime where interference
oscillations with period h/2e persist throughout the transition between the
integer quantum Hall plateaus 2 and 3, including half-filling. In a large
quantum Hall sample, a transition between integer plateaus occurs near
half-filling, where the bulk of the sample becomes delocalized and thus
dissipative bulk current flows between the counterpropagating edges
("backscattering"). In a quantum Hall constriction, where conductance is due to
electron tunneling, a transition between forward- and back-scattering is
expected near the half-filling. In our experiment, neither period nor amplitude
of the oscillations show a discontinuity at half-filling, indicating that only
one interference path exists throughout the transition. We also present
experiments and an analysis of the front-gate dependence of the phase of the
oscillations. The results point to a single physical mechanism of the observed
conductance oscillations: Aharonov-Bohm interference of interacting electrons
in quantum Hall regime.Comment: 10 pages, 4 Fig
Multi-beam Energy Moments of Multibeam Particle Velocity Distributions
High resolution electron and ion velocity distributions, f(v), which consist
of N effectively disjoint beams, have been measured by NASA's Magnetospheric
Multi-Scale Mission (MMS) observatories and in reconnection simulations.
Commonly used standard velocity moments generally assume a single
mean-flow-velocity for the entire distribution, which can lead to
counterintuitive results for a multibeam f(v). An example is the (false)
standard thermal energy moment of a pair of equal and opposite cold particle
beams, which is nonzero even though each beam has zero thermal energy. By
contrast, a multibeam moment of two or more beams has no false thermal energy.
A multibeam moment is obtained by taking a standard moment of each beam and
then summing over beams. In this paper we will generalize these notions,
explore their consequences and apply them to an f(v) which is sum of
tri-Maxwellians. Both standard and multibeam energy moments have coherent and
incoherent forms. Examples of incoherent moments are the thermal energy
density, the pressure and the thermal energy flux (enthalpy flux plus heat
flux). Corresponding coherent moments are the bulk kinetic energy density, the
RAM pressure and the bulk kinetic energy flux. The false part of an incoherent
moment is defined as the difference between the standard incoherent moment and
the corresponding multibeam moment. The sum of a pair of corresponding coherent
and incoherent moments will be called the undecomposed moment. Undecomposed
moments are independent of whether the sum is standard or multibeam and
therefore have advantages when studying moments of measured f(v).Comment: 27 single-spaced pages. Three Figure
Effective One-Dimensional Coupling in the Highly-Frustrated Square-Lattice Itinerant Magnet CaCoAs
Inelastic neutron scattering measurements on the itinerant antiferromagnet
(AFM) CaCoAs at a temperature of 8 K reveal two
orthogonal planes of scattering perpendicular to the Co square lattice in
reciprocal space, demonstrating the presence of effective one-dimensional spin
interactions. These results are shown to arise from near-perfect bond
frustration within the - Heisenberg model on a square lattice with
ferromagnetic , and hence indicate that the extensive previous
experimental and theoretical study of the - Heisenberg model on
local-moment square spin lattices should be expanded to include itinerant spin
systems
The use of orbitals and full spectra to identify misalignment
In this paper, a SpectraQuest demonstrator is used to introduce misalignment in a rotating set-up. The vibrations caused by misalignment is measured with both accelerometers on the bearings and eddy current probes on the shaft itself. A comparison is made between the classical spectral analysis, orbitals and full spectra. Orbitals are used to explain the physical interpretation of the vibration caused by misalignment. Full spectra allow to distinguish unbalance from misalignment by looking at the forward and reversed phenomena. This analysis is done for different kinds of misalignment, couplings, excitation forces and combined machinery faults
- …