4,168 research outputs found

    The Indefinite Conservatorship of Fannie Mae and Freddie Mac is State-Action

    Get PDF
    Article published in the Michigan State Journal of Business and Securities Law

    Bostonia: v. 63, no. 3

    Full text link
    Founded in 1900, Bostonia magazine is Boston University's main alumni publication, which covers alumni and student life, as well as university activities, events, and programs

    The Marked Tree Site: Evaluation of Geosynthetic Reinforcements in Flexible Pavements

    Get PDF
    This document presents findings from a three-year, full-scale, field research project aimed at determining the benefits of using geosynthetic reinforcements to improve the performance of flexible pavements constructed over poor subgrade soils. The test site, known as the Marked Tree site, is an 850-ft (258-m) long segment of low-volume frontage road along Highway 63 in the town of Marked Tree, Arkansas. The site, constructed in 2005, consists of seventeen 50-ft (15.2-m) long flexible pavement test sections with various types of geosynthetic reinforcements (woven and nonwoven geotextiles, and geogrids), which were all positioned at the base-subgrade interface, and two different nominal base course thicknesses [6-in (15.2-cm) and 10-in (25.4-cm)]. One section in each nominal base course sector was left unreinforced to allow for monitoring of the relative performance between reinforced and unreinforced sections of like basal thicknesses. The different sections were evaluated in this study using deflection-based, surficial testing conducted between 2008 and 2011, as well as subsurface forensic investigations conducted in October 2010. Signs of serious pavement distress appeared in some of the test sections in the Spring of 2010. Distress surveys revealed that all of the failed sections [defined herein as sections with average rut depths \u3e 0.5 in (1.3 cm)] had nominal base thicknesses of 6-in (15.2-cm) and were reinforced with various geosynthetics. None of the sections with 10-in (25.4-cm) nominal base thicknesses had failed despite receiving more than twice the number of ESALs as the 6-in (15.2-cm) sections. The impact of base course thickness was easily observed in the deflection-based test results and rutting measurements. However, it was difficult to discern a consistent, clear trend of better pavement performance relative to the various geosynthetic types in each nominal base course thickness. Irrespective of geosynthetic reinforcement type (or lack thereof) all of the sections that failed with respect to excessive rutting were the sections with the least combined total pavement thickness (i.e., combined asphalt and base course thickness)

    Magnetic Fields in the 3C 129 Cluster

    Get PDF
    We present multi-frequency VLA observations of the two radio galaxies 3C 129 and 3C 129.1 embedded in a luminous X-ray cluster. These radio observations reveal a substantial difference in the Faraday Rotation Measures (RMs) toward 3C 129.1 at the cluster center and 3C 129 at the cluster periphery. After deriving the density profile from available X-ray data, we find that the RM structure of both radio galaxies can be fit by a tangled cluster magnetic field with strength 6 microGauss extending at least 3 core radii (450 kpc) from the cluster center. The magnetic field makes up a small contribution to the total pressure (5%) in the central regions of the cluster. The radio morphology of 3C 129.1 appears disturbed on the southern side, perhaps by the higher pressure environment. In contrast with earlier claims for the presence of a moderately strong cooling flow in the 3C 129 cluster, our analysis of the X-ray data places a limit on the mass deposition rate from any such flow of <1.2 Msun/yr.Comment: in press at MNRA

    On equilibrium shapes of charged flat drops

    Full text link
    Equilibrium shapes of two-dimensional charged, perfectly conducting liquid drops are governed by a geometric variational problem that involves a perimeter term modeling line tension and a capacitary term modeling Coulombic repulsion. Here we give a complete explicit solution to this variational problem. Namely, we show that at fixed total charge a ball of a particular radius is the unique global minimizer among all sufficiently regular sets in the plane. For sets whose area is also fixed, we show that balls are the only minimizers if the charge is less than or equal to a critical charge, while for larger charge minimizers do not exist. Analogous results hold for drops whose potential, rather than charge, is fixed

    No effect of arm exercise on diaphragmatic fatigue or ventilatory constraint in Paralympic athletes with cervical spinal cord injury

    Get PDF
    Cervical spinal cord injury (CSCI) results in a decrease in the capacity of the lungs and chest wall for pressure, volume, and airflow generation. We asked whether such impairments might increase the potential for exercise-induced diaphragmatic fatigue and mechanical ventilatory constraint in this population. Seven Paralympic wheelchair rugby players (mean ± SD peak oxygen uptake = 16.9 ± 4.9 ml·kg–1·min–1) with traumatic CSCI (C5–C7) performed arm-crank exercise to the limit of tolerance at 90% of their predetermined peak work rate. Diaphragm function was assessed before and 15 and 30 min after exercise by measuring the twitch transdiaphragmatic pressure (Pdi,tw) response to bilateral anterolateral magnetic stimulation of the phrenic nerves. Ventilatory constraint was assessed by measuring the tidal flow volume responses to exercise in relation to the maximal flow volume envelope. Pdi,tw was not different from baseline at any time after exercise (unpotentiated Pdi,tw = 19.3 ± 5.6 cmH2O at baseline, 19.8 ± 5.0 cmH2O at 15 min after exercise, and 19.4 ± 5.7 cmH2O at 30 min after exercise; P = 0.16). During exercise, there was a sudden, sustained rise in operating lung volumes and an eightfold increase in the work of breathing. However, only two subjects showed expiratory flow limitation, and there was substantial capacity to increase both flow and volume (<50% of maximal breathing reserve). In conclusion, highly trained athletes with CSCI do not develop exercise-induced diaphragmatic fatigue and rarely reach mechanical ventilatory constraint
    corecore