1,327 research outputs found

    A Nonlinear Modal Aeroelastic Solver for FUN3D

    Get PDF
    A nonlinear structural solver has been implemented internally within the NASA FUN3D computational fluid dynamics code, allowing for some new aeroelastic capabilities. Using a modal representation of the structure, a set of differential or differential-algebraic equations are derived for general thin structures with geometric nonlinearities. ODEPACK and LAPACK routines are linked with FUN3D, and the nonlinear equations are solved at each CFD time step. The existing predictor-corrector method is retained, whereby the structural solution is updated after mesh deformation. The nonlinear solver is validated using a test case for a flexible aeroshell at transonic, supersonic, and hypersonic flow conditions. Agreement with linear theory is seen for the static aeroelastic solutions at relatively low dynamic pressures, but structural nonlinearities limit deformation amplitudes at high dynamic pressures. No flutter was found at any of the tested trajectory points, though LCO may be possible in the transonic regime

    Flutter Analysis of the Thermal Protection Layer on the NASA HIAD

    Get PDF
    A combination of classical plate theory and a supersonic aerodynamic model is used to study the aeroelastic flutter behavior of a proposed thermal protection system (TPS) for the NASA HIAD. The analysis pertains to the rectangular configurations currently being tested in a NASA wind-tunnel facility, and may explain why oscillations of the articles could be observed. An analysis using a linear flat plate model indicated that flutter was possible well within the supersonic flow regime of the wind tunnel tests. A more complex nonlinear analysis of the TPS, taking into account any material curvature present due to the restraint system or substructure, indicated that significantly greater aerodynamic forcing is required for the onset of flutter. Chaotic and periodic limit cycle oscillations (LCOs) of the TPS are possible depending on how the curvature is imposed. When the pressure from the base substructure on the bottom of the TPS is used as the source of curvature, the flutter boundary increases rapidly and chaotic behavior is eliminated

    Fragile antiferromagnetism in the heavy-fermion compound YbBiPt

    Get PDF
    We report results from neutron scattering experiments on single crystals of YbBiPt that demonstrate antiferromagnetic order characterized by a propagation vector, τAFM\tau_{\rm{AFM}} = (121212\frac{1}{2} \frac{1}{2} \frac{1}{2}), and ordered moments that align along the [1 1 1] direction of the cubic unit cell. We describe the scattering in terms of a two-Gaussian peak fit, which consists of a narrower component that appears below TN ≈0.4T_{\rm{N}}~\approx 0.4 K and corresponds to a magnetic correlation length of ξn≈\xi_{\rm{n}} \approx 80 A˚\rm{\AA}, and a broad component that persists up to T∗≈T^*\approx 0.7 K and corresponds to antiferromagnetic correlations extending over ξb≈\xi_{\rm{b}} \approx 20 A˚\rm{\AA}. Our results illustrate the fragile magnetic order present in YbBiPt and provide a path forward for microscopic investigations of the ground states and fluctuations associated with the purported quantum critical point in this heavy-fermion compound.Comment: 5 pages, 3 figure
    • …
    corecore