83 research outputs found
Towards revealing key factors in mechanical instability of bioabsorbable Zn-based alloys for intended vascular stenting
Zn-based alloys are recognized as promising bioabsorbable materials for cardiovascular stents, due to their biocompatibility and favorable degradability as compared to Mg. However, both low strength and intrinsic mechanical instability arising from a strong strain rate sensitivity and strain softening behavior make development of Zn alloys challenging for stent applications. In this study, we developed binary Zn-4.0Ag and ternary Zn-4.0Ag-xMn (where x = 0.2â0.6wt%) alloys. An experimental methodology was designed by cold working followed by a thermal treatment on extruded alloys, through which the effects of the grain size and precipitates could be thoroughly investigated. Microstructural observations revealed a significant grain refinement during wire drawing, leading to an ultrafine-grained (UFG) structure with a size of 700 nm and 200 nm for the Zn-4.0Ag and Zn-4.0Ag-0.6Mn, respectively. Mn showed a powerful grain refining effect, as it promoted the dynamic recrystallization. Furthermore, cold working resulted in dynamic precipitation of AgZn3 particles, distributing throughout the Zn matrix. Such precipitates triggered mechanical degradation through an activation of Zn/AgZn3 boundary sliding, reducing the tensile strength by 74% and 57% for Zn-4.0Ag and Zn-4.0Ag-0.6Mn, respectively. The observed precipitation softening caused a strong strain rate sensitivity in cold drawn alloys. Short-time annealing significantly mitigated the mechanical instability by reducing the AgZn3 fraction. The ternary alloy wire showed superior microstructural stability relative to its Mn-free counterpart due to the pinning effect of Mn-rich particles on the grain boundaries. Eventually, a shift of the corrosion regime from localized to more uniform was observed after the heat treatment, mainly due to the dissolution of AgZn3 precipitates.
Statement of Significance
Owing to its promising biodegradability, zinc has been recognized as a potential biodegradable material for stenting applications. However, Zn's poor strength alongside intrinsic mechanical instability have propelled researchers to search for Zn alloys with improved mechanical properties. Although extensive researches have been conducted to satisfy the mentioned concerns, no Zn-based alloys with stabilized mechanical properties have yet been reported. In this work, the mechanical properties and stability of the Zn-Ag-based alloys were systematically evaluated as a function of microstructural features. We found that the microstructure design in Zn alloys can be used to find an effective strategy to not only improve the strength and suppress the mechanical instability but also to minimize any damage by augmenting the corrosion uniformity
A bounded confidence approach to understanding user participation in peer production systems
Commons-based peer production does seem to rest upon a paradox. Although
users produce all contents, at the same time participation is commonly on a
voluntary basis, and largely incentivized by achievement of project's goals.
This means that users have to coordinate their actions and goals, in order to
keep themselves from leaving. While this situation is easily explainable for
small groups of highly committed, like-minded individuals, little is known
about large-scale, heterogeneous projects, such as Wikipedia.
In this contribution we present a model of peer production in a large online
community. The model features a dynamic population of bounded confidence users,
and an endogenous process of user departure. Using global sensitivity analysis,
we identify the most important parameters affecting the lifespan of user
participation. We find that the model presents two distinct regimes, and that
the shift between them is governed by the bounded confidence parameter. For low
values of this parameter, users depart almost immediately. For high values,
however, the model produces a bimodal distribution of user lifespan. These
results suggest that user participation to online communities could be
explained in terms of group consensus, and provide a novel connection between
models of opinion dynamics and commons-based peer production.Comment: 17 pages, 5 figures, accepted to SocInfo201
Topological Defects, Orientational Order, and Depinning of the Electron Solid in a Random Potential
We report on the results of molecular dynamics simulation (MD) studies of the
classical two-dimensional electron crystal in the presence disorder. Our study
is motivated by recent experiments on this system in modulation doped
semiconductor systems in very strong magnetic fields, where the magnetic length
is much smaller than the average interelectron spacing , as well as by
recent studies of electrons on the surface of helium. We investigate the low
temperature state of this system using a simulated annealing method. We find
that the low temperature state of the system always has isolated dislocations,
even at the weakest disorder levels investigated. We also find evidence for a
transition from a hexatic glass to an isotropic glass as the disorder is
increased. The former is characterized by quasi-long range orientational order,
and the absence of disclination defects in the low temperature state, and the
latter by short range orientational order and the presence of these defects.
The threshold electric field is also studied as a function of the disorder
strength, and is shown to have a characteristic signature of the transition.
Finally, the qualitative behavior of the electron flow in the depinned state is
shown to change continuously from an elastic flow to a channel-like, plastic
flow as the disorder strength is increased.Comment: 31 pages, RevTex 3.0, 15 figures upon request, accepted for
publication in Phys. Rev. B., HAF94MD
Formality theorems for Hochschild complexes and their applications
We give a popular introduction to formality theorems for Hochschild complexes
and their applications. We review some of the recent results and prove that the
truncated Hochschild cochain complex of a polynomial algebra is non-formal.Comment: Submitted to proceedings of Poisson 200
Classical Simulation of Relativistic Quantum Mechanics in Periodic Optical Structures
Spatial and/or temporal propagation of light waves in periodic optical
structures offers a rather unique possibility to realize in a purely classical
setting the optical analogues of a wide variety of quantum phenomena rooted in
relativistic wave equations. In this work a brief overview of a few optical
analogues of relativistic quantum phenomena, based on either spatial light
transport in engineered photonic lattices or on temporal pulse propagation in
Bragg grating structures, is presented. Examples include spatial and temporal
photonic analogues of the Zitterbewegung of a relativistic electron, Klein
tunneling, vacuum decay and pair-production, the Dirac oscillator, the
relativistic Kronig-Penney model, and optical realizations of non-Hermitian
extensions of relativistic wave equations.Comment: review article (invited), 14 pages, 7 figures, 105 reference
- âŠ