5,653 research outputs found

    Partial purification and characterization of a novel human factor that augments the expression of class I MHC antigens on tumour cells

    Get PDF
    A cytokine which augments the expression of major histocompatibility complex (MHC) I antigens on K562 and gastric carcinoma tumour (HR) cells, has been isolated from the culture supernatant of Concanavalin-A (Con-A) activated human peripheral blood mononuclear cells. The factor, termed MHC augmenting factor (MHC- AF) has been partially purified by Sephadex G- 100 column chromatography, preparative isoelectric focusing and HPLC with ion- exchange as well as sizing columns. MHC-AF activity is associated with a 35 kDa molecule which has pI of 6.0. Interferon (IFN)-α, β, tumour necrosis factor (TNF), Interleukin (IL)-2, IL-4, IL-5 and IL-7 had no significant effect in MHC- AF bioassay, but IFN-γ had significant MHC-AF activity. Antibodies to IFN-α , IFN-β and TNF-α did not block the activity of MHC-AF, but anti-IFN-y antibodies could partially neutralize the activity. However, unlike IFN-γ , MHC-AF activity was resistant to pH 2.0 treatment. Purified MHC-AF preparations did not have any activity in WISH cell/encephalo myocarditis virus (EMC) IFN bioassays. In addition, anti-IFN-y affinity column did not retain MHC-AF activity. These results indicate that a MHC-AF distinct from IFN-γ, is produced by activated human mononuclear cells

    On the ultimate convergence rates for isotropic algorithms and the best choices among various forms of isotropy

    Get PDF
    In this paper, we show universal lower bounds for isotropic algorithms, that hold for any algorithm such that each new point is the sum of one already visited p oint plus one random isotropic direction multiplied by any step size (whenever the step size is chosen by an oracle with arbitrarily high computational power). The bound is 1 − O(1/d) for the constant in the linear convergence (i.e. the constant C such that the distance to the optimum after n steps is upp er b ounded by C n ), as already seen for some families of evolution strategies in [19, 12], in contrast with 1 − O(1) for the reverse case of a random step size and a direction chosen by an oracle with arbitrary high computational power. We then recall that isotropy does not uniquely determine the distribution of a sample on the sphere and show that the convergence rate in isotropic algorithms is improved by using stratified or antithetic isotropy instead of naive isotropy. We show at the end of the pap er that b eyond the mathematical proof, the result holds on exp eriments. We conclude that one should use antithetic-isotropy or stratified-isotropy, and never standard-isotropy

    Dynamical reentrance and geometry imposed quantization effects in Nb-AlOx-Nb Josephson junction arrays

    Full text link
    In this paper, we report on different phenomena related to the magnetic properties of artificially prepared highly ordered (periodic) two-dimensional Josephson junction arrays (2D-JJA) of both shunted and unshunted Nb-AlOx-Nb tunnel junctions. By employing mutual-inductance measurements and using a high-sensitive bridge, we have thoroughly investigated (both experimentally and theoretically) the temperature and magnetic field dependence of complex AC susceptibility of 2D-JJA. We also demonstrate the use of the scanning SQUID microscope for imaging the local flux distribution within our unshunted arrays

    Coherent States and Modified de Broglie-Bohm Complex Quantum Trajectories

    Full text link
    This paper examines the nature of classical correspondence in the case of coherent states at the level of quantum trajectories. We first show that for a harmonic oscillator, the coherent state complex quantum trajectories and the complex classical trajectories are identical to each other. This congruence in the complex plane, not restricted to high quantum numbers alone, illustrates that the harmonic oscillator in a coherent state executes classical motion. The quantum trajectories are those conceived in a modified de Broglie-Bohm scheme and we note that identical classical and quantum trajectories for coherent states are obtained only in the present approach. The study is extended to Gazeau-Klauder and SUSY quantum mechanics-based coherent states of a particle in an infinite potential well and that in a symmetric Poschl-Teller (PT) potential by solving for the trajectories numerically. For the coherent state of the infinite potential well, almost identical classical and quantum trajectories are obtained whereas for the PT potential, though classical trajectories are not regained, a periodic motion results as t --> \infty.Comment: More example

    Quantum System Identification by Bayesian Analysis of Noisy Data: Beyond Hamiltonian Tomography

    Full text link
    We consider how to characterize the dynamics of a quantum system from a restricted set of initial states and measurements using Bayesian analysis. Previous work has shown that Hamiltonian systems can be well estimated from analysis of noisy data. Here we show how to generalize this approach to systems with moderate dephasing in the eigenbasis of the Hamiltonian. We illustrate the process for a range of three-level quantum systems. The results suggest that the Bayesian estimation of the frequencies and dephasing rates is generally highly accurate and the main source of errors are errors in the reconstructed Hamiltonian basis.Comment: 6 pages, 3 figure

    Study of coupling loss on bi-columnar BSCCO/Ag tapes by a.c. susceptibility measurements

    Full text link
    Coupling losses were studied in composite tapes containing superconducting material in the form of two separate stacks of densely packed filaments embedded in a metallic matrix of Ag or Ag alloy. This kind of sample geometry is quite favorable for studying the coupling currents and in particular the role of superconducting bridges between filaments. By using a.c. susceptibility technique, the electromagnetic losses as function of a.c. magnetic field amplitude and frequency were measured at the temperature T = 77 K for two tapes with different matrix composition. The length of samples was varied by subsequent cutting in order to investigate its influence on the dynamics of magnetic flux penetration. The geometrical factor χ0\chi_0 which takes into account the demagnetizing effects was established from a.c. susceptibility data at low amplitudes. Losses vs frequency dependencies have been found to agree nicely with the theoretical model developed for round multifilamentary wires. Applying this model, the effective resistivity of the matrix was determined for each tape, by using only measured quantities. For the tape with pure silver matrix its value was found to be larger than what predicted by the theory for given metal resistivity and filamentary architecture. On the contrary, in the sample with a Ag/Mg alloy matrix, an effective resistivity much lower than expected was determined. We explain these discrepancies by taking into account the properties of the electrical contact of the interface between the superconducting filaments and the normal matrix. In the case of soft matrix of pure Ag, this is of poor quality, while the properties of alloy matrix seem to provoke an extensive creation of intergrowths which can be actually observed in this kind of samples.Comment: 20 pages 11 figure, submitted to Superconductor Science and Technolog

    Mammalian Adaptation of an Avian Influenza A Virus Involves Stepwise Changes in NS1

    Get PDF
    Influenza A viruses (IAVs) are common pathogens of birds that occasionally establish endemic infections in mammals. The processes and mechanisms that result in IAV mammalian adaptation are poorly understood. The viral non-structural 1 (NS1) protein counteracts the interferon (IFN) response, a central component of the host-species barrier. We characterised the NS1 proteins of equine influenza virus (EIV), a mammalian IAV lineage of avian origin. We showed that evolutionary distinct NS1s counteract the IFN response using different and mutually exclusive mechanisms: while the NS1s of early EIVs block general gene expression by binding to the cellular polyadenylation specific factor 30 (CPSF30), NS1s from more evolved EIVs specifically block the induction of IFN-stimulated genes by interfering with the JAK/STAT pathway. These contrasting anti-IFN strategies are associated with two mutations that appeared sequentially and became rapidly selected during EIV evolution, highlighting the importance of evolutionary processes on immune evasion mechanisms during IAV adaptation

    Управління виробничими запасами на підприємстві (на матеріалах ПрАТ «Детвілер Ущільнюючі Технології України»)

    Get PDF
    . The second-order matching problem is the problem of determining, for a finite set {#t i , s i # | i # I} of pairs of a second-order term t i and a first-order closed term s i , called a matching expression, whether or not there exists a substitution # such that t i # = s i for each i # I . It is well-known that the second-order matching problem is NP-complete. In this paper, we introduce the following restrictions of a matching expression: k-ary, k-fv , predicate, ground , and function-free. Then, we show that the second-order matching problem is NP-complete for a unary predicate, a unary ground, a ternary function-free predicate, a binary function-free ground, and an 1-fv predicate matching expressions, while it is solvable in polynomial time for a binary function-free predicate, a unary function-free, a k-fv function-free (k # 0), and a ground predicate matching expressions. 1 Introduction The unification problem is the problem of determining whether or not any two ter..

    Prepyramid-to-pyramid transition of SiGe islands on Si(001)

    Full text link
    The morphology of the first three-dimensional islands appearing during strained growth of SiGe alloys on Si(001) was investigated by scanning tunneling microscopy. High resolution images of individual islands and a statistical analysis of island shapes were used to reconstruct the evolution of the island shape as a function of size. As they grow, islands undergo a transition from completely unfacetted rough mounds (prepyramids) to partially {105} facetted islands and then they gradually evolve to {105} facetted pyramids. The results are in good agreement with the predictions of a recently proposed theoretical model
    corecore