5,315 research outputs found

    Observation of slow light in the noise spectrum of a vertical external cavity surface emitting laser

    Full text link
    The role of coherent population oscillations is evidenced in the noise spectrum of an ultra-low noise lasers. This effect is isolated in the intensity noise spectrum of an optimized single-frequency vertical external cavity surface emitting laser. The coherent population oscillations induced by the lasing mode manifest themselves through their associated dispersion that leads to slow light effects probed by the spontaneous emission present in the non-lasing side modes.Comment: accepted for publication in Phys. Rev. Let

    Quantum System Identification by Bayesian Analysis of Noisy Data: Beyond Hamiltonian Tomography

    Full text link
    We consider how to characterize the dynamics of a quantum system from a restricted set of initial states and measurements using Bayesian analysis. Previous work has shown that Hamiltonian systems can be well estimated from analysis of noisy data. Here we show how to generalize this approach to systems with moderate dephasing in the eigenbasis of the Hamiltonian. We illustrate the process for a range of three-level quantum systems. The results suggest that the Bayesian estimation of the frequencies and dephasing rates is generally highly accurate and the main source of errors are errors in the reconstructed Hamiltonian basis.Comment: 6 pages, 3 figure

    Toward a global description of the nucleus-nucleus interaction

    Get PDF
    Extensive systematization of theoretical and experimental nuclear densities and of optical potential strengths exctracted from heavy-ion elastic scattering data analyses at low and intermediate energies are presented.The energy-dependence of the nuclear potential is accounted for within a model based on the nonlocal nature of the interaction.The systematics indicate that the heavy-ion nuclear potential can be described in a simple global way through a double-folding shape,which basically depends only on the density of nucleons of the partners in the collision.The poissibility of extracting information about the nucleon-nucleon interaction from the heavy-ion potential is investigated.Comment: 12 pages,12 figure

    Coherent States and Modified de Broglie-Bohm Complex Quantum Trajectories

    Full text link
    This paper examines the nature of classical correspondence in the case of coherent states at the level of quantum trajectories. We first show that for a harmonic oscillator, the coherent state complex quantum trajectories and the complex classical trajectories are identical to each other. This congruence in the complex plane, not restricted to high quantum numbers alone, illustrates that the harmonic oscillator in a coherent state executes classical motion. The quantum trajectories are those conceived in a modified de Broglie-Bohm scheme and we note that identical classical and quantum trajectories for coherent states are obtained only in the present approach. The study is extended to Gazeau-Klauder and SUSY quantum mechanics-based coherent states of a particle in an infinite potential well and that in a symmetric Poschl-Teller (PT) potential by solving for the trajectories numerically. For the coherent state of the infinite potential well, almost identical classical and quantum trajectories are obtained whereas for the PT potential, though classical trajectories are not regained, a periodic motion results as t --> \infty.Comment: More example

    Multipurpose High Frequency Electron Spin Resonance Spectrometer for Condensed Matter Research

    Full text link
    We describe a quasi-optical multifrequency ESR spectrometer operating in the 75-225 GHz range and optimized at 210 GHz for general use in condensed matter physics, chemistry and biology. The quasi-optical bridge detects the change of mm wave polarization at the ESR. A controllable reference arm maintains a mm wave bias at the detector. The attained sensitivity of 2x10^10 spin/G/(Hz)1/2, measured on a dilute Mn:MgO sample in a non-resonant probe head at 222.4 GHz and 300 K, is comparable to commercial high sensitive X band spectrometers. The spectrometer has a Fabry-Perot resonator based probe head to measure aqueous solutions, and a probe head to measure magnetic field angular dependence of single crystals. The spectrometer is robust and easy to use and may be operated by undergraduate students. Its performance is demonstrated by examples from various fields of condensed matter physics.Comment: submitted to Journal of Magnetic Resonanc
    corecore