399 research outputs found

    The role of dissipation in biasing the vacuum selection in quantum field theory at finite temperature

    Full text link
    We study the symmetry breaking pattern of an O(4) symmetric model of scalar fields, with both charged and neutral fields, interacting with a photon bath. Nagasawa and Brandenberger argued that in favourable circumstances the vacuum manifold would be reduced from S^3 to S^1. Here it is shown that a selective condensation of the neutral fields, that are not directly coupled to photons, can be achieved in the presence of a minimal ``external'' dissipation, i.e. not related to interactions with a bath. This should be relevant in the early universe or in heavy-ion collisions where dissipation occurs due to expansion.Comment: Final version to appear in Phys. Rev. D, 2 figures added, 2 new sub-section

    On computational irreducibility and the predictability of complex physical systems

    Full text link
    Using elementary cellular automata (CA) as an example, we show how to coarse-grain CA in all classes of Wolfram's classification. We find that computationally irreducible (CIR) physical processes can be predictable and even computationally reducible at a coarse-grained level of description. The resulting coarse-grained CA which we construct emulate the large-scale behavior of the original systems without accounting for small-scale details. At least one of the CA that can be coarse-grained is irreducible and known to be a universal Turing machine.Comment: 4 pages, 2 figures, to be published in PR

    Geometric origin of scaling in large traffic networks

    Get PDF
    Large scale traffic networks are an indispensable part of contemporary human mobility and international trade. Networks of airport travel or cargo ships movements are invaluable for the understanding of human mobility patterns\cite{Guimera2005}, epidemic spreading\cite{Colizza2006}, global trade\cite{Imo2006} and spread of invasive species\cite{Ruiz2000}. Universal features of such networks are necessary ingredients of their description and can point to important mechanisms of their formation. Different studies\cite{Barthelemy2010} point to the universal character of some of the exponents measured in such networks. Here we show that exponents which relate i) the strength of nodes to their degree and ii) weights of links to degrees of nodes that they connect have a geometric origin. We present a simple robust model which exhibits the observed power laws and relates exponents to the dimensionality of 2D space in which traffic networks are embedded. The model is studied both analytically and in simulations and the conditions which result with previously reported exponents are clearly explained. We show that the relation between weight strength and degree is s(k)k3/2s(k)\sim k^{3/2}, the relation between distance strength and degree is sd(k)k3/2s^d(k)\sim k^{3/2} and the relation between weight of link and degrees of linked nodes is wij(kikj)1/2w_{ij}\sim(k_ik_j)^{1/2} on the plane 2D surface. We further analyse the influence of spherical geometry, relevant for the whole planet, on exact values of these exponents. Our model predicts that these exponents should be found in future studies of port networks and impose constraints on more refined models of port networks.Comment: 17 pages, 5 figures, 1 tabl

    Structural Stability and Renormalization Group for Propagating Fronts

    Full text link
    A solution to a given equation is structurally stable if it suffers only an infinitesimal change when the equation (not the solution) is perturbed infinitesimally. We have found that structural stability can be used as a velocity selection principle for propagating fronts. We give examples, using numerical and renormalization group methods.Comment: 14 pages, uiucmac.tex, no figure

    Renormalization Group Theory for Global Asymptotic Analysis

    Full text link
    We show with several examples that renormalization group (RG) theory can be used to understand singular and reductive perturbation methods in a unified fashion. Amplitude equations describing slow motion dynamics in nonequilibrium phenomena are RG equations. The renormalized perturbation approach may be simpler to use than other approaches, because it does not require the use of asymptotic matching, and yields practically superior approximations.Comment: 13 pages, plain tex + uiucmac.tex (available from babbage.sissa.it), one PostScript figure appended at end. Or (easier) get compressed postscript file by anon ftp from gijoe.mrl.uiuc.edu (128.174.119.153), file /pub/rg_sing_prl.ps.

    Thermodynamics of Quantum Jump Trajectories

    Full text link
    We apply the large-deviation method to study trajectories in dissipative quantum systems. We show that in the long time limit the statistics of quantum jumps can be understood from thermodynamic arguments by exploiting the analogy between large-deviation and free-energy functions. This approach is particularly useful for uncovering properties of rare dissipative trajectories. We also prove, via an explicit quantum mapping, that rare trajectories of one system can be realized as typical trajectories of an alternative system.Comment: 5 pages, 3 figure

    The Renormalization Group and Singular Perturbations: Multiple-Scales, Boundary Layers and Reductive Perturbation Theory

    Full text link
    Perturbative renormalization group theory is developed as a unified tool for global asymptotic analysis. With numerous examples, we illustrate its application to ordinary differential equation problems involving multiple scales, boundary layers with technically difficult asymptotic matching, and WKB analysis. In contrast to conventional methods, the renormalization group approach requires neither {\it ad hoc\/} assumptions about the structure of perturbation series nor the use of asymptotic matching. Our renormalization group approach provides approximate solutions which are practically superior to those obtained conventionally, although the latter can be reproduced, if desired, by appropriate expansion of the renormalization group approximant. We show that the renormalization group equation may be interpreted as an amplitude equation, and from this point of view develop reductive perturbation theory for partial differential equations describing spatially-extended systems near bifurcation points, deriving both amplitude equations and the center manifold.Comment: 44 pages, 2 Postscript figures, macro \uiucmac.tex available at macro archives or at ftp://gijoe.mrl.uiuc.edu/pu

    Emergence of heterogeneity and political organization in information exchange networks

    Full text link
    We present a simple model of the emergence of the division of labor and the development of a system of resource subsidy from an agent-based model of directed resource production with variable degrees of trust between the agents. The model has three distinct phases, corresponding to different forms of societal organization: disconnected (independent agents), homogeneous cooperative (collective state), and inhomogeneous cooperative (collective state with a leader). Our results indicate that such levels of organization arise generically as a collective effect from interacting agent dynamics, and may have applications in a variety of systems including social insects and microbial communities.Comment: 10 pages, 6 figure

    A simple topological model with continuous phase transition

    Full text link
    In the area of topological and geometric treatment of phase transitions and symmetry breaking in Hamiltonian systems, in a recent paper some general sufficient conditions for these phenomena in Z2\mathbb{Z}_2-symmetric systems (i.e. invariant under reflection of coordinates) have been found out. In this paper we present a simple topological model satisfying the above conditions hoping to enlighten the mechanism which causes this phenomenon in more general physical models. The symmetry breaking is testified by a continuous magnetization with a nonanalytic point in correspondence of a critical temperature which divides the broken symmetry phase from the unbroken one. A particularity with respect to the common pictures of a phase transition is that the nonanalyticity of the magnetization is not accompanied by a nonanalytic behavior of the free energy.Comment: 17 pages, 7 figure

    Universal Scaling in Non-equilibrium Transport Through a Single-Channel Kondo Dot

    Full text link
    Scaling laws and universality play an important role in our understanding of critical phenomena and the Kondo effect. Here we present measurements of non-equilibrium transport through a single-channel Kondo quantum dot at low temperature and bias. We find that the low-energy Kondo conductance is consistent with universality between temperature and bias and characterized by a quadratic scaling exponent, as expected for the spin-1/2 Kondo effect. The non-equilibrium Kondo transport measurements are well-described by a universal scaling function with two scaling parameters.Comment: v2: improved introduction and theory-experiment comparsio
    corecore