research

A simple topological model with continuous phase transition

Abstract

In the area of topological and geometric treatment of phase transitions and symmetry breaking in Hamiltonian systems, in a recent paper some general sufficient conditions for these phenomena in Z2\mathbb{Z}_2-symmetric systems (i.e. invariant under reflection of coordinates) have been found out. In this paper we present a simple topological model satisfying the above conditions hoping to enlighten the mechanism which causes this phenomenon in more general physical models. The symmetry breaking is testified by a continuous magnetization with a nonanalytic point in correspondence of a critical temperature which divides the broken symmetry phase from the unbroken one. A particularity with respect to the common pictures of a phase transition is that the nonanalyticity of the magnetization is not accompanied by a nonanalytic behavior of the free energy.Comment: 17 pages, 7 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions