4,167 research outputs found
Precision laser range finder system design for Advanced Technology Laboratory applications
Preliminary system design of a pulsed precision ruby laser rangefinder system is presented which has a potential range resolution of 0.4 cm when atmospheric effects are negligible. The system being proposed for flight testing on the advanced technology laboratory (ATL) consists of a modelocked ruby laser transmitter, course and vernier rangefinder receivers, optical beacon retroreflector tracking system, and a network of ATL tracking retroreflectors. Performance calculations indicate that spacecraft to ground ranging accuracies of 1 to 2 cm are possible
A general moment NRIXS approach to the determination of equilibrium Fe isotopic fractionation factors: application to goethite and jarosite
We measured the reduced partition function ratios for iron isotopes in
goethite FeO(OH), potassium-jarosite KFe3(SO4)2(OH)6, and hydronium-jarosite
(H3O)Fe3(SO4)2(OH)6, by Nuclear Resonant Inelastic X-Ray Scattering (NRIXS,
also known as Nuclear Resonance Vibrational Spectroscopy -NRVS- or Nuclear
Inelastic Scattering -NIS) at the Advanced Photon Source. These measurements
were made on synthetic minerals enriched in 57Fe. A new method (i.e., the
general moment approach) is presented to calculate {\beta}-factors from the
moments of the NRIXS spectrum S(E). The first term in the moment expansion
controls iron isotopic fractionation at high temperature and corresponds to the
mean force constant of the iron bonds, a quantity that is readily measured and
often reported in NRIXS studies.Comment: 38 pages, 2 tables, 8 figures. In press at Geochimica et Cosmochimica
Acta. Appendix C contains new derivations relating the moments of the iron
PDOS to the moments of the excitation probability function measured in
Nuclear Resonant Inelastic X-ray Scatterin
Top-BESS model and its phenomenology
We introduce the top-BESS model which is the effective description of the
strong electroweak symmetry breaking with a single new SU(2)_L+R triplet vector
resonance. The model is a modification of the BESS model in the fermion sector.
The triplet couples to the third generation of quarks only. This approach
reflects a possible extraordinary role of the top quark in the mechanism of
electroweak symmetry breaking. The low-energy limits on the model parameters
found provide hope for finding sizable signals in the LHC Drell-Yan processes
as well as in the s-channel production processes at the ILC. However, there are
regions of the model parameter space where the interplay of the direct and
indirect fermion couplings can hide the resonance peak in a scattering process
even though the resonance exists and couples directly to top and bottom quarks.Comment: published in Physical Review D, minor changes in text, 21 pages, 37
figure
The Littlest Higgs
We present an economical theory of natural electroweak symmetry breaking,
generalizing an approach based on deconstruction. This theory is the smallest
extension of the Standard Model to date that stabilizes the electroweak scale
with a naturally light Higgs and weakly coupled new physics at TeV energies.
The Higgs is one of a set of pseudo Goldstone bosons in an
nonlinear sigma model. The symmetry breaking scale is around a TeV, with
the cutoff \Lambda \lsim 4\pi f \sim 10 TeV. A single electroweak doublet,
the ``little Higgs'', is automatically much lighter than the other pseudo
Goldstone bosons. The quartic self-coupling for the little Higgs is generated
by the gauge and Yukawa interactions with a natural size ,
while the top Yukawa coupling generates a negative mass squared triggering
electroweak symmetry breaking. Beneath the TeV scale the effective theory is
simply the minimal Standard Model. The new particle content at TeV energies
consists of one set of spin one bosons with the same quantum numbers as the
electroweak gauge bosons, an electroweak singlet quark with charge 2/3, and an
electroweak triplet scalar. One loop quadratically divergent corrections to the
Higgs mass are cancelled by interactions with these additional particles.Comment: 15 pages. References added. Corrected typos in the discussion of the
top Yukawa couplin
Correlational Origin of the Roton Minimum
We present compelling evidence supporting the conjecture that the origin of
the roton in Bose-condensed systems arises from strong correlations between the
constituent particles. By studying the two dimensional bosonic dipole systems a
paradigm, we find that classical molecular dynamics (MD) simulations provide a
faithful representation of the dispersion relation for a low- temperature
quantum system. The MD simulations allow one to examine the effect of coupling
strength on the formation of the roton minimum and to demonstrate that it is
always generated at a sufficiently high enough coupling. Moreover, the
classical images of the roton-roton, roton-maxon, etc. states also appear in
the MD simulation spectra as a consequence of the strong coupling.Comment: 7 pages, 4 figure
Research and education in management of large-scale technical programs
A research effort is reported which was conducted by NASA in conjunction with Drexel University, and which was aimed at an improved understanding of large scale systems technology and management
Decay of Superconducting and Magnetic Correlations in One- and Two-Dimensional Hubbard Models
In a general class of one and two dimensional Hubbard models, we prove upper
bounds for the two-point correlation functions at finite temperatures for
electrons, for electron pairs, and for spins. The upper bounds decay
exponentially in one dimension, and with power laws in two dimensions. The
bounds rule out the possibility of the corresponding condensation of
superconducting electron pairs, and of the corresponding magnetic ordering. Our
method is general enough to cover other models such as the t-J model.Comment: LaTeX, 8 pages, no figures. A reference appeared after the
publication is adde
- …