33 research outputs found

    Illuminating Entreprenuership

    Get PDF
    Graduate Theological Proposa

    Novel conducting polymer current limiting devices for low cost surge protection applications

    Get PDF
    We report on the development of novel intrinsic conducting polymer two terminal surge protection devices. These resettable current limiting devices consist of polyaniline nanofibres doped with methane sulphonic acid electrochemically deposited between two 55 μm spaced gold electrodes. At normal applied voltages, the low resistance devices act as passive circuit elements, not affecting the current flow. However during a current surge the devices switch from ohmic to non-ohmic behaviour, limiting current through the device. After the current surge has passed, the devices reset back to their original state. Our studies show that a partial de-doping/re-doping process caused by the rapid diffusion of moisture out of or into the polymer film during joule heating/cooling is the underlying mechanism responsible

    Large dopant dependence of the current limiting properties of intrinsic conducting polymer surge protection devices

    Get PDF
    New two terminal surge protection devices based on intrinsic conducting polymers are demonstrated to be strongly affected by the dopant molecule type. Thermogravimetric analysis combined with current–voltage studies show a causal link between the dopant molecule, moisture content and the current limiting capability of the devices. Polyaniline thin-films with high moisture content produce devices with current saturation and foldback effects at high applied voltages while low moisture content films exhibit no current rectification and instead demonstrate decreasing resistivity with increasing voltage. Polyaniline doped with sulfuric acid (H2SO4) exhibited the largest moisture content and surge protection devices built with this material produced for the first time negative differential resistance under ambient conditions. A further improvement was made upon this through surface engineering of the interface between the polymer and electrodes using self-assembled monolayers

    Super hydrophobic SAM modified electrodes for enhanced current limiting properties in intrinsic conducting polymer surge protection devices

    Get PDF
    Surface interface engineering using superhydrophobic gold electrodes made with 1-dodecanethiol self-assembled monolayer (SAM) has been used to enhance the current limiting properties of novel surge protection devices based on the intrinsic conducting polymer, polyaniline doped with methanesulfonic acid. The resulting devices show significantly enhanced current limiting characteristics, including current saturation, foldback, and negative differential effects. We show how SAM modification changes the morphology of the polymer film directly adjacent to the electrodes, leading to the formation of an interfacial compact thin film that lowers the contact resistance at the Au−polymer interface. We attribute the enhanced current limiting properties of the devices to a combination of lower contact resistance and increased Joule heating within this interface region which during a current surge produces a current blocking resistive barrier due to a thermally induced dedoping effect caused by the rapid diffusion of moisture away from this region. The effect is exacerbated at higher applied voltages as the higher temperature leads to stronger depletion of charge carriers in this region, resulting in a negative differential resistance effec

    John Dugan Follow Up From Wendy Edelberg

    Get PDF

    APOΕ4 Lowers Energy Expenditure in Females and Impairs Glucose Oxidation by Increasing Flux through Aerobic Glycolysis

    Get PDF
    BACKGROUND: Cerebral glucose hypometabolism is consistently observed in individuals with Alzheimer\u27s disease (AD), as well as in young cognitively normal carriers of the Ε4 allele of Apolipoprotein E (APOE), the strongest genetic predictor of late-onset AD. While this clinical feature has been described for over two decades, the mechanism underlying these changes in cerebral glucose metabolism remains a critical knowledge gap in the field. METHODS: Here, we undertook a multi-omic approach by combining single-cell RNA sequencing (scRNAseq) and stable isotope resolved metabolomics (SIRM) to define a metabolic rewiring across astrocytes, brain tissue, mice, and human subjects expressing APOE4. RESULTS: Single-cell analysis of brain tissue from mice expressing human APOE revealed E4-associated decreases in genes related to oxidative phosphorylation, particularly in astrocytes. This shift was confirmed on a metabolic level with isotopic tracing of 13C-glucose in E4 mice and astrocytes, which showed decreased pyruvate entry into the TCA cycle and increased lactate synthesis. Metabolic phenotyping of E4 astrocytes showed elevated glycolytic activity, decreased oxygen consumption, blunted oxidative flexibility, and a lower rate of glucose oxidation in the presence of lactate. Together, these cellular findings suggest an E4-associated increase in aerobic glycolysis (i.e. the Warburg effect). To test whether this phenomenon translated to APOE4 humans, we analyzed the plasma metabolome of young and middle-aged human participants with and without the Ε4 allele, and used indirect calorimetry to measure whole body oxygen consumption and energy expenditure. In line with data from E4-expressing female mice, a subgroup analysis revealed that young female E4 carriers showed a striking decrease in energy expenditure compared to non-carriers. This decrease in energy expenditure was primarily driven by a lower rate of oxygen consumption, and was exaggerated following a dietary glucose challenge. Further, the stunted oxygen consumption was accompanied by markedly increased lactate in the plasma of E4 carriers, and a pathway analysis of the plasma metabolome suggested an increase in aerobic glycolysis. CONCLUSIONS: Together, these results suggest astrocyte, brain and system-level metabolic reprogramming in the presence of APOE4, a \u27Warburg like\u27 endophenotype that is observable in young females decades prior to clinically manifest AD

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Designing porous low-k dielectrics

    No full text
    The 100 nm device generation calls for low-k dielectrics below 2.5, which should soon be lowered to 2.0 or less for future technology nodes. The dielectric constant, of a given material can be reduced by decreasing polarizability and film density, but the most powerful synthetic method involves the introduction of porosity. A variety of pore generation methods are being used to create ultralow-k spin-on dielectrics with k values as low as 1.3

    Designing porous low-k dielectrics

    No full text
    The 100 nm device generation calls for low-k dielectrics below 2.5, which should soon be lowered to 2.0 or less for future technology nodes. The dielectric constant, of a given material can be reduced by decreasing polarizability and film density, but the most powerful synthetic method involves the introduction of porosity. A variety of pore generation methods are being used to create ultralow-k spin-on dielectrics with k values as low as 1.3

    Modelling and simulation analysis for the prediction of the performance of intrinsic conducting polymer current limiting device

    No full text
    © 2017 American Scientific Publishers All rights reserved. Previous studies have shown that the current limiting concept and interruption of short-circuit currents in low power applications have been introduced, particularly in polymer switch based on the positive temperature coefficient of resistance (PCTR) concept. However there are many restrictions in the active material, which consists of conductive fillers. This research presents a considerably improved and simplified approach that replaces the existing current limiters with faster switching elements. Its elegance lies in the remarkable simplicity and low-cost processes of producing the device using polyaniline (PANI) doped with methane-sulfonic acid (MSA). The experimental results have been modelled and simulated for moisture contents where its proved to be very significant in increasing the resistance thus implying good current-limiting properties. Sample characterization experiments have been performed and proven to be significantly enhanced in device response compared to conventional carbon block copolymer device. Additionally I–V (current voltage) characterisation in moisture presence environment is shown to increase the resistivity and also improved its current limiting performance
    corecore