46 research outputs found

    Recent Progress with bioSFQ Circuit Family for Neuromorphic Computing

    Full text link
    Superconductor single flux quantum (SFQ) technology is attractive for neuromorphic computing due to low energy dissipation and high, potentially up to 100 GHz, clock rates. We have recently suggested a new family of bioSFQ circuits (V.K. Semenov et al., IEEE TAS, vol. 32, no. 4, 1400105, 2022) where information is stored as a value of current in a superconducting loop and transferred as a rate of SFQ pulses propagating between the loops. This approach in the simplest case dealing with positive numbers, requires single-line transfer channels. In the more general case of bipolar numbers, it requires dual-rail transfer channels. For this need, a new comparator with dual-rail output has been developed and is presented. This comparator is an essential part of a bipolar multiplier that has also been designed, fabricated, and tested. We discuss strategic advantages of the suggested bioSFQ approach, e.g., an inherently asynchronous character of bioSFQ cells which do not require explicit clock signals. As a result, bioSFQ circuits are free of racing errors and tolerant to occasional collision of propagating SFQ pulses. This tolerance is due to stochastic nature of data signals generated by comparators operating within their gray zone. The circuits were fabricated in the eight-niobium-layer fabrication process SFQ5ee developed for superconductor electronics at MIT Lincoln Laboratory.Comment: 5 pages, 7 figures, 12 references. This paper was presented at Applied Superconductivity Conference, ASC 2022, October 23-28, 2022, Honolulu, Hawai

    Low-Cost Superconducting Fan-Out with Repurposed Josephson Junctions

    Full text link
    Superconductor electronics (SCE) promise computer systems with orders of magnitude higher speeds and lower energy consumption than their complementary metal-oxide semiconductor (CMOS) counterpart. At the same time, the scalability and resource utilization of superconducting systems are major concerns. Some of these concerns come from device-level challenges and the gap between SCE and CMOS technology nodes, and others come from the way Josephson Junctions (JJs) are used. Towards this end, we notice that a considerable fraction of hardware resources are not involved in logic operations, but rather are used for fan-out and buffering purposes. In this paper, we ask if there is a way to reduce these overheads; propose the repurposing of JJs at the cell boundaries for fan-out; and establish a set of rules to discretize critical currents in a way that is conducive to this reassignment. Finally, we demonstrate the accomplished gains through detailed analog simulations and modeling analyses. Our experiments indicate that the introduced method leads to a 48% savings in the JJ count in a tree with a fan-out of 1024, as well as an average of 43% of the JJ count for signal splitting and 32% for clock fan-out in ISCAS'85 benchmarks.Comment: 11 pages, 20 figures, submitted to IEEE TA

    Progress toward superconductor electronics fabrication process with planarized NbN and NbN/Nb layers

    Full text link
    To increase density of superconductor digital and neuromorphic circuits by 10x and reach integration scale of 10810^8 Josephson junctions (JJs) per chip, we developed a new fabrication process on 200-mm wafers, using self-shunted Nb/Al-AlOx/Nb JJs and kinetic inductors. The process has a layer of JJs, a layer of resistors, and 10 fully planarized superconducting layers: 8 Nb layers and 2 layers of high kinetic inductance materials, Mo2_2N and NbN, with sheet inductance of 8 pH/sq and 3 pH/sq, respectively. NbN films were deposited by two methods: with TcT_c=15.5 K by reactive sputtering of a Nb target in Ar+N2_2 mixture; with TcT_c in the range from 9 K to 13 K by plasma-enhanced chemical vapor deposition (PECVD) using Tris(diethylamido)(tert-butylimido)niobium(V) metalorganic precursor. PECVD of NbN was investigated to obtain conformal deposition and filling narrow trenches and vias with high depth-to-width ratios, which was not possible to achieve using sputtering and other physical vapor deposition (PVD) methods at temperatures below 200oC200 ^oC required to prevent degradation of Nb/Al-AlOx/Nb junctions. Nb layers with 200 nm thickness are used in the process layer stack as ground planes to maintain a high level of interlayer shielding and low intralayer mutual coupling, for passive transmission lines with wave impedances matching impedances of JJs, typically <=50 Ω\Omega, and for low-value inductors. NbN and NbN/Nb bilayer are used for cell inductors. Using NbN/Nb bilayers and individual pattering of both layers to form inductors allowed us to minimize parasitic kinetic inductance associated with interlayer vias and connections to JJs as well as to increase critical currents of the vias. Fabrication details and results of electrical characterization of NbN films, wires, and vias, and comparison with Nb properties are given.Comment: 12 pages, 16 figures, 4 tables, 49 references. Submitted to IEEE TAS on Nov. 10, 202

    Extremely Large Area (88 mm X 88 mm) Superconducting Integrated Circuit (ELASIC)

    Full text link
    Superconducting integrated circuit (SIC) is a promising "beyond-CMOS" device technology enables speed-of-light, nearly lossless communications to advance cryogenic (4 K or lower) computing. However, the lack of large-area superconducting IC has hindered the development of scalable practical systems. Herein, we describe a novel approach to interconnect 16 high-resolution deep UV (DUV EX4, 248 nm lithography) full reticle circuits to fabricate an extremely large (88mm X 88 mm) area superconducting integrated circuit (ELASIC). The fabrication process starts by interconnecting four high-resolution DUV EX4 (22 mm X 22 mm) full reticles using a single large-field (44 mm X 44 mm) I-line (365 nm lithography) reticle, followed by I-line reticle stitching at the boundaries of 44 mm X 44 mm fields to fabricate the complete ELASIC field (88 mm X 88 mm). The ELASIC demonstrated a 2X-12X reduction in circuit features and maintained high-stitched line superconducting critical currents. We examined quantum flux parametron (QFP) circuits to demonstrate the viability of common active components used for data buffering and transmission. Considering that no stitching requirement for high-resolution EX4 DUV reticles is employed, the present fabrication process has the potential to advance the scaling of superconducting quantum devices

    Failure of human rhombic lip differentiation underlies medulloblastoma formation

    Get PDF
    Medulloblastoma (MB) comprises a group of heterogeneous paediatric embryonal neoplasms of the hindbrain with strong links to early development of the hindbrain 1–4. Mutations that activate Sonic hedgehog signalling lead to Sonic hedgehog MB in the upper rhombic lip (RL) granule cell lineage 5–8. By contrast, mutations that activate WNT signalling lead to WNT MB in the lower RL 9,10. However, little is known about the more commonly occurring group 4 (G4) MB, which is thought to arise in the unipolar brush cell lineage 3,4. Here we demonstrate that somatic mutations that cause G4 MB converge on the core binding factor alpha (CBFA) complex and mutually exclusive alterations that affect CBFA2T2, CBFA2T3, PRDM6, UTX and OTX2. CBFA2T2 is expressed early in the progenitor cells of the cerebellar RL subventricular zone in Homo sapiens, and G4 MB transcriptionally resembles these progenitors but are stalled in developmental time. Knockdown of OTX2 in model systems relieves this differentiation blockade, which allows MB cells to spontaneously proceed along normal developmental differentiation trajectories. The specific nature of the split human RL, which is destined to generate most of the neurons in the human brain, and its high level of susceptible EOMES +KI67 + unipolar brush cell progenitor cells probably predisposes our species to the development of G4 MB
    corecore