9,013 research outputs found

    Precision laser range finder system design for Advanced Technology Laboratory applications

    Get PDF
    Preliminary system design of a pulsed precision ruby laser rangefinder system is presented which has a potential range resolution of 0.4 cm when atmospheric effects are negligible. The system being proposed for flight testing on the advanced technology laboratory (ATL) consists of a modelocked ruby laser transmitter, course and vernier rangefinder receivers, optical beacon retroreflector tracking system, and a network of ATL tracking retroreflectors. Performance calculations indicate that spacecraft to ground ranging accuracies of 1 to 2 cm are possible

    A novel laser ranging system for measurement of ground-to-satellite distances

    Get PDF
    A technique was developed for improving the precision of laser ranging measurements of ground-to-satellite distances. The method employs a mode-locked laser transmitter and utilizes an image converter tube equipped with deflection plates in measuring the time of flight of the laser pulse to a distant retroreflector and back. Samples of the outgoing and returning light pulses are focussed on the photocathode of the image converter tube, whose deflection plates are driven by a high-voltage 120 MHz sine wave derived from a very stable oscillator. From the relative positions of the images produced at the output phosphor by the two light pulses, it is possible to make a precise determination of the fractional amount by which the time of flight exceeds some large integral multiple of the period of the deflection sinusoid

    Collective excitations in electron-hole bilayers

    Full text link
    We report a combined analytic and Molecular Dynamics analysis of the collective mode spectrum of an electron-hole (bipolar) bilayer in the strong coupling quasi-classical limit. A robust, isotropic energy gap is identified in the out-of-phase spectra, generated by the combined effect of correlations and of the excitation of the bound dipoles; the in-phase spectra exhibit a correlation governed acoustic dispersion for the longitudinal and transverse modes. Strong nonlinear generation of higher harmonics of the fundamental dipole oscillation frequency and the transfer of harmonics between different modes is observed. The mode dispersions in the liquid state are compared with the phonon spectrum in the crystalline solid phase, reinforcing a coherent physical picture.Comment: 4 pages, 5 figure

    The cleavage surface of the BaFe_(2-x)Co_(x)As_(2) and Fe_(y)Se_(1-x)Te_(x) superconductors: from diversity to simplicity

    Full text link
    We elucidate the termination surface of cleaved single crystals of the BaFe_(2-x)Co_(x)As_(2) and Fe_(y)Se_(1-x)Te_(x) families of the high temperature iron based superconductors. By combining scanning tunneling microscopic data with low energy electron diffraction we prove that the termination layer of the Ba122 systems is a remnant of the Ba layer, which exhibits a complex diversity of ordered and disordered structures. The observed surface topographies and their accompanying superstructure reflections in electron diffraction depend on the cleavage temperature. In stark contrast, Fe_(y)Se_(1-x)Te_(x) possesses only a single termination structure - that of the tetragonally ordered Se_(1-x)Te_(x) layer.Comment: 4 pages, 4 figure

    Antimatter research in Space

    Get PDF
    Two of the most compelling issues facing astrophysics and cosmology today are to understand the nature of the dark matter that pervades the universe and to understand the apparent absence of cosmological antimatter. For both issues, sensitive measurements of cosmic-ray antiprotons and positrons, in a wide energy range, are crucial. Many different mechanisms can contribute to antiprotons and positrons production, ranging from conventional reactions up to exotic processes like neutralino annihilation. The open problems are so fundamental (i.e.: is the universe symmetric in matter and antimatter ?) that experiments in this field will probably be of the greatest interest in the next years. Here we will summarize the present situation, showing the different hypothesis and models and the experimental measurements needed to lead to a more established scenario.Comment: 10 pages, 7 figures, Invited talk at the 18th European Cosmic Ray Symposium, Moscow, July 2002, submitted to Journal of Physics

    Angle-resolved and core-level photoemission study of interfacing the topological insulator Bi1.5Sb0.5Te1.7Se1.3 with Ag, Nb and Fe

    Get PDF
    Interfaces between a bulk-insulating topological insulator (TI) and metallic adatoms have been studied using high-resolution, angle-resolved and core-level photoemission. Fe, Nb and Ag were evaporated onto Bi1.5Sb0.5Te1.7Se1.3 (BSTS) surfaces both at room temperature and 38K. The coverage- and temperature-dependence of the adsorption and interfacial formation process have been investigated, highlighting the effects of the overlayer growth on the occupied electronic structure of the TI. For all coverages at room temperature and for those equivalent to less than 0.1 monolayer at low temperature all three metals lead to a downward shift of the TI's bands with respect to the Fermi level. At room temperature Ag appears to intercalate efficiently into the van der Waals gap of BSTS, accompanied by low-level substitution of the Te/Se atoms of the termination layer of the crystal. This Te/Se substitution with silver increases significantly for low temperature adsorption, and can even dominate the electrostatic environment of the Bi/Sb atoms in the BSTS near-surface region. On the other hand, Fe and Nb evaporants remain close to the termination layer of the crystal. On room temperature deposition, they initially substitute isoelectronically for Bi as a function of coverage, before substituting for Te/Se atoms. For low temperature deposition, Fe and Nb are too immobile for substitution processes and show a behaviour consistent with clustering on the surface. For both Ag and Fe/Nb, these differing adsorption pathways leads to the qualitatively similar and remarkable behavior for low temperature deposition that the chemical potential first moves upward (n-type dopant behavior) and then downward (p-type behavior) on increasing coverage.Comment: 10 pages, 4 figures. In our Phys. Rev. B manuscript an error was made in formulating the last sentence of the abstract that, unfortunately, was missed in the page proofs. Version 2 on arxiv has the correct formulation of this sentenc
    corecore