73 research outputs found

    How large should whales be?

    Full text link
    The evolution and distribution of species body sizes for terrestrial mammals is well-explained by a macroevolutionary tradeoff between short-term selective advantages and long-term extinction risks from increased species body size, unfolding above the 2g minimum size induced by thermoregulation in air. Here, we consider whether this same tradeoff, formalized as a constrained convection-reaction-diffusion system, can also explain the sizes of fully aquatic mammals, which have not previously been considered. By replacing the terrestrial minimum with a pelagic one, at roughly 7000g, the terrestrial mammal tradeoff model accurately predicts, with no tunable parameters, the observed body masses of all extant cetacean species, including the 175,000,000g Blue Whale. This strong agreement between theory and data suggests that a universal macroevolutionary tradeoff governs body size evolution for all mammals, regardless of their habitat. The dramatic sizes of cetaceans can thus be attributed mainly to the increased convective heat loss is water, which shifts the species size distribution upward and pushes its right tail into ranges inaccessible to terrestrial mammals. Under this macroevolutionary tradeoff, the largest expected species occurs where the rate at which smaller-bodied species move up into large-bodied niches approximately equals the rate at which extinction removes them.Comment: 7 pages, 3 figures, 2 data table

    Scaling of oscillatory kinematics and Froude efficiency in baleen whales

    Get PDF
    High efficiency lunate-tail swimming with high-aspect-ratio lifting surfaces has evolved in many vertebrate lineages, from fish to cetaceans. Baleen whales (Mysticeti) are the largest swimming animals that exhibit this locomotor strategy, and present an ideal study system to examine how morphology and the kinematics of swimming scale to the largest body sizes. We used data from whale-borne inertial sensors coupled with morphometric measurements from aerial drones to calculate the hydrodynamic performance of oscillatory swimming in six baleen whale species ranging in body length from 5 to 25 m (fin whale, Balaenoptera physalus; Bryde\u27s whale, Balaenoptera edeni; sei whale, Balaenoptera borealis; Antarctic minke whale, Balaenoptera bonaerensis; humpback whale, Megaptera novaeangliae; and blue whale, Balaenoptera musculus). We found that mass-specific thrust increased with both swimming speed and body size. Froude efficiency, defined as the ratio of useful power output to the rate of energy input (Sloop, 1978), generally increased with swimming speed but decreased on average with increasing body size. This finding is contrary to previous results in smaller animals, where Froude efficiency increased with body size. Although our empirically parameterized estimates for swimming baleen whale drag were higher than those of a simple gliding model, oscillatory locomotion at this scale exhibits generally high Froude efficiency as in other adept swimmers. Our results quantify the fine-scale kinematics and estimate the hydrodynamics of routine and energetically expensive swimming modes at the largest scale

    Why whales are big but not bigger : physiological drivers and ecological limits in the age of ocean giants

    Get PDF
    This research was funded in part by grants from the National Science Foundation (IOS-1656676, IOS-1656656; OPP-1644209 and 07-39483), the Office of Naval Research (N000141612477), and a Terman Fellowship from Stanford University. All procedures in USA were conducted under approval of the National Marine Fisheries Service (Permits 781-1824, 16163, 14809, 16111, 19116, 15271, 20430), Canada DFO SARA/MML 2010-01/SARA-106B, National Marine Sanctuaries (MULTI-2017-007), Antarctic Conservation Act (2009-014, 2015-011) and institutional IACUC committee protocols. Fieldwork, data collection and data processing for M. densirostris were funded by the Office of Naval Research grants N00014-07-10988, N00014-07-11023, N00014-08-10990, N00014-18-1-2062, and 00014-15-1-2553, and the U.S. Strategic Environmental Research and Development Program Grant SI-1539. PLT gratefully acknowledges funding from funding the MASTS pooling initiative (The Marine Alliance for Science and Technology for Scotland). MASTS is funded by the Scottish Funding Council (HR09011) and contributing institutions.The largest animals are marine filter feeders, but the underlying mechanism of their large size remains unexplained. We measured feeding performance and prey quality to demonstrate how whale gigantism is driven by the interplay of prey abundance and harvesting mechanisms that increase prey capture rates and energy intake. The foraging efficiency of toothed whales that feed on single prey is constrained by the abundance of large prey, whereas filter-feeding baleen whales seasonally exploit vast swarms of small prey at high efficiencies. Given temporally and spatially aggregated prey, filter feeding provides an evolutionary pathway to extremes in body size that are not available to lineages that must feed on one prey at a time. Maximum size in filter feeders is likely constrained by prey availability across space and time.PostprintPeer reviewe

    Effect of fortification of fresh cow milk with coconut milk on the proximate composition and yield of warankashi, a traditional cheese

    Get PDF
    Cheese is a concentrated dairy product produced by acid or rennet coagulation or curdling of milk, stirring and heating the curd, draining off the whey, collecting and pressing the curd. The effect of partial substitution of fresh cow milk with coconut milk on the yield and proximate composition of cheese was examined. Extracted coconut milk was mixed with fresh raw cow milk at varying proportions of 5%: 95%, 10%: 90%, 15%: 85%, 20%: 80%, 25%:75%, 70%: 30% and the control (0%:100%) to produce cheese. The control and the partially substituted cheeses were stored in a refrigerator and examined for sensory quality, percentage yield, total titrable acidity, and proximate analysis. The yield of cheese showed significant (p< 0.05) decrease from 26.71% (control sample) to 13.55% as the level of coconut milk increased. The total titrable acidity of cheese was found to be between the ranges of 0.20% - 0.29% which displayed a significant increase from 0.20% - 0.29%. The protein content of the cow-coconut cheese blends showed a significant difference (p<0.05) and an increase of 14.05%-15.33% (at 5%-30% substitution of coconut milk), with the control sample having 13.75%. There was also an increase in fat content from 9.20% - 9.64% (5% - 30% substitution of coconut milk, with the control sample having 8.94%. There was a decrease in the carbohydrate content of the cheese blends which ranged between 8.23% -2.82%, with the control sample having 9.60%. There was a significant decrease (p<0.05) in the ash content of the cow-coconut cheese blends, with the control sample having 1.02%. Significant difference (p<0.05) was observed in the colour, aroma, taste, texture, and overall acceptability as influenced by varying proportions of added coconut milk. The blend with 5% coconut milk and 95% cow milk was most acceptable by panellists. The work showed the potential of coconut as an alternative source of milk in cheese making with improved nutritional value and consumer acceptability

    Avoidance responses of minke whales to 1–4 kHz naval sonar

    Get PDF
    The SOCAL project was funded by the US Navy Chief of Naval Operations Environmental Readiness Division and US Office of Naval Research. The 3S project was funded by the Norwegian Ministry of Defence, the US Office of Naval Research, the Netherlands Ministry of Defence and DGA French Ministry of Defence. The MOCHA project was funded by the US Office of Naval Research. Tyack received funding from the MASTS pooling initiative (The Marine Alliance for Science and Technology for Scotland) and their support is gratefully acknowledged. MASTS is funded by the Scottish Funding Council (grant reference HR09011) and contributing institutions.Minke whales are difficult to study and little information exists regarding their responses to anthropogenic sound. This study pools data from behavioural response studies off California and Norway. Data are derived from four tagged animals, of which one from each location was exposed to naval sonar signals. Statistical analyses were conducted using Mahalanobis distance to compare overall changes in parameters summarising dive behaviour, avoidance behaviour, and potential energetic costs of disturbance. Our quantitative analysis showed that both animals initiated avoidance behaviour, but responses were not associated with unusual dive behaviour. In one exposed animal the avoidance of the sonar source included a 5-fold increase in horizontal speed away from the source, implying a significant increase in metabolic rate. Despite the different environmental settings and exposure contexts, clear changes in behaviour were observed providing the first insights into the nature of responses to human noise for this wide-ranging species.PostprintPeer reviewe

    Diving Behavior and Fine-Scale Kinematics of Free-Ranging Risso's Dolphins Foraging in Shallow and Deep-Water Habitats

    Get PDF
    Air-breathing marine predators must balance the conflicting demands of oxygen conservation during breath-hold and the cost of diving and locomotion to capture prey. However, it remains poorly understood how predators modulate foraging performance when feeding at different depths and in response to changes in prey distribution and type. Here, we used high-resolution multi-sensor tags attached to Risso's dolphins (Grampus griseus) and concurrent prey surveys to quantify their foraging performance over a range of depths and prey types. Dolphins (N = 33) foraged in shallow and deep habitats [seabed depths less or more than 560 m, respectively] and within the deep habitat, in vertically stratified prey features occurring at several aggregation levels. Generalized linear mixed-effects models indicated that dive kinematics were driven by foraging depth rather than habitat. Bottom-phase duration and number of buzzes (attempts to capture prey) per dive increased with depth. In deep dives, dolphins were gliding for &gt;50% of descent and adopted higher pitch angles both during descent and ascents, which was likely to reduce energetic cost of longer transits. This lower cost of transit was counteracted by the record of highest vertical swim speeds, rolling maneuvers and stroke rates at depth, together with a 4-fold increase in the inter-buzz interval (IBI), suggesting higher costs of pursuing, and handling prey compared to shallow-water feeding. In spite of the increased capture effort at depth, dolphins managed to keep their estimated overall metabolic rate comparable across dive types. This indicates that adjustments in swimming modes may enable energy balance in deeper dives. If we think of the surface as a central place where divers return to breathe, our data match predictions that central place foragers should increase the number and likely quality of prey items at greater distances. These dolphins forage efficiently from near-shore benthic communities to depth-stratified scattering layers, enabling them to maximize their fitness
    • 

    corecore